ALBERT是如何做到又快又好的

  1. ALBERT: A LITE BERT FOR SELF-SUPERVISED
    LEARNING OF LANGUAGE REPRESENTATIONS
  2. MIXED PRECISION TRAINING
  3. https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT)
    作者做了很多文献调研,很深的功底。多读paper多coding
    增加模型的表达能力和更大的模型并不是一回事。
    模型压缩上,作者用到了两种技术,一是隐含层矩阵分解;二是跨层权值共享。精度提升上,introduce a self-supervised loss for
    sentence-order prediction
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值