1. BERT总结
- MLM (Masked language model)
- NSP (Next Sentence Prediction)
MLM :
在一句话中随机选择 15% 的词汇用于预测。对于在原句中被抹去的词汇, 80% 情况下采用一个特殊符号 [MASK] 替换, 10% 情况下采用一个任意词替换,剩余 10% 情况下保持原词汇不变。这么做的主要原因是:在后续微调任务中语句中并不会出现 [MASK] 标记,而且这么做的另一个好处是:预测一个词汇时,模型并不知道输入对应位置的词汇是否为正确的词汇( 10% 概率),这就迫使模型更多地依赖于上下文信息去预测词汇,并且赋予了模型一定的纠错能力。上述提到了这样做的一个缺点,其实这样做还有另外一个缺点,就是每批次数据中只有 15% 的标记被预测,这意味着模型可能需要更多的预训练步骤来收敛。
bert 缺点:
- MLM直接对单个token进行随机mask,丢失了短语和实体信息,这一点对中文尤其明显,百度ERNIE对其进行了改进
- MLM仅预测被mask的token,其他token没有参与到预测中。而GPT等语言模型可以对每个token进行预测。导致MLM训练效率偏低,训练时间过长。这一点BERT论文自己也提到了,ELECTRA围绕这一点进行了改进。
- NSP任务可以学到sequence level信息,但仅为一个二分类,且负样本构造过于简单,导致模型不能充分训练。之前BERT的消融分析中也看到了,NSP对下游任务的作用比MLM要小。SpanBERT、ALBERT、Roberta均提到了这一点&#x