BERT、ALBERT、RoBerta、ERNIE模型对比和改进点总结

本文总结了BERT、ALBERT、RoBERTa和ERNIE四大预训练模型的核心特点和改进点。BERT使用MLM和NSP任务,但存在训练效率低等问题;ALBERT通过矩阵分解和跨层共享提高效率,引入SOP任务增强句子连贯性学习;RoBERTa放弃了NSP,专注MLM,提升了预训练效果;ERNIE则增加了短语和实体级别的mask,结合外部知识,特别适合中文场景。这些模型的改进旨在提升模型在下游任务中的性能。
摘要由CSDN通过智能技术生成

1. BERT总结

  • MLM (Masked language model)
  • NSP (Next Sentence Prediction)

MLM :

 在一句话中随机选择 15% 的词汇用于预测。对于在原句中被抹去的词汇, 80% 情况下采用一个特殊符号 [MASK] 替换, 10% 情况下采用一个任意词替换,剩余 10% 情况下保持原词汇不变。这么做的主要原因是:在后续微调任务中语句中并不会出现 [MASK] 标记,而且这么做的另一个好处是:预测一个词汇时,模型并不知道输入对应位置的词汇是否为正确的词汇( 10% 概率),这就迫使模型更多地依赖于上下文信息去预测词汇,并且赋予了模型一定的纠错能力。上述提到了这样做的一个缺点,其实这样做还有另外一个缺点,就是每批次数据中只有 15% 的标记被预测,这意味着模型可能需要更多的预训练步骤来收敛。

bert 缺点:

  1. MLM直接对单个token进行随机mask,丢失了短语和实体信息,这一点对中文尤其明显,百度ERNIE对其进行了改进
  2. MLM仅预测被mask的token,其他token没有参与到预测中。而GPT等语言模型可以对每个token进行预测。导致MLM训练效率偏低,训练时间过长。这一点BERT论文自己也提到了,ELECTRA围绕这一点进行了改进。
  3. NSP任务可以学到sequence level信息,但仅为一个二分类,且负样本构造过于简单,导致模型不能充分训练。之前BERT的消融分析中也看到了,NSP对下游任务的作用比MLM要小。SpanBERT、ALBERT、Roberta均提到了这一点&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值