那些年

在慢慢爬的程序员

POJ - 3061 Subsequence

题意:求一个有n个正整数组成的序列,给定整数S,求长度最短的连续序列,使得它们的和大于等于S

思路:第一种方法:用二分找到满足B[j]-B[i] >= S的最小的长度,复杂度O(nlogn)

第二种方法:由于j是递增的,B[j]也是递增的,所以B[i-1]<=B[j]-S的右边也是递增的,也就是说满足条件的i的位置也是递增的

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 100005;

int A[MAXN],B[MAXN];
int n,S;

int main(){
    int t;
    scanf("%d",&t);
    while (t--){
        scanf("%d%d",&n,&S);
        for (int i = 1; i <= n; i++)
            scanf("%d",&A[i]);
        B[0] = 0;
        for (int i = 1; i <= n; i++)
            B[i] = B[i-1] + A[i];
        int ans = n+1;
        for (int j = 1; j <= n; j++){
            int i = lower_bound(B,B+j,B[j]-S) - B;
            if (i > 0)
                ans = min(ans,j-i+1);
        }
        printf("%d\n",(ans == n+1) ? 0 : ans);
    }
    return 0;
}


#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 100005;

int A[MAXN],B[MAXN];
int n,S;

int main(){
    int t;
    scanf("%d",&t);
    while (t--){
        scanf("%d%d",&n,&S);
        for (int i = 1; i <= n; i++)
            scanf("%d",&A[i]);
        B[0] = 0;
        for (int i = 1; i <= n; i++)
            B[i] = B[i-1] + A[i];
        int i = 1,ans = n+1;
        for (int j = 1; j <= n; j++){
            if (B[i-1] > B[j] - S)
                continue;
            while (B[i] <= B[j] - S)
                i++;
            ans = min(ans,j-i+1);
        }
        printf("%d\n",(ans == n+1) ? 0 : ans);
    }
    return 0;
}



阅读更多
个人分类: 二分 高效算法
上一篇UVA - 1267 Network
下一篇POJ - 1964 City Game
想对作者说点什么? 我来说一句

poj Common Subsequence c++

2008年12月15日 654B 下载

没有更多推荐了,返回首页

关闭
关闭