那些年

在慢慢爬的程序员

POJ - 1390 Blocks

题意:n个带颜色的方格排成一列。相同颜色的连成一块区域,你可以选择任意一个区域消去,设这块区域的块数是x,那么你将得到x^2的分值,其右边的方格会左移,与被消去的连在一起,求能得到的最高分值

思路:状态转移DP,让dp[i][j][k]表示将第i块到第j块消去能得到的最大值,那么对于一块区域,我们可以选择直接消去或者让它与前面的相同颜色的一起消去,K的值记录的是在第二种情况下,第j种之后的块数

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 205;

int len[MAXN],dp[MAXN][MAXN][MAXN],n,color[MAXN],cnt;

int DP(int x,int y,int k){
    if (dp[x][y][k])
        return dp[x][y][k];
    if (x == y)
        return (len[x]+k)*(len[x]+k);
    dp[x][y][k] = DP(x,y-1,0)+(len[y]+k)*(len[y]+k);
    for (int i = x; i < y; i++){
        if (color[y] == color[i])
            dp[x][y][k] = max(dp[x][y][k],DP(x,i,len[y]+k)+DP(i+1,y-1,0));
    }
    return dp[x][y][k];
}

int main(){
    int T,ans;
    scanf("%d",&T);
    for (int t = 1; t <= T; t++){
        scanf("%d",&n);
        cnt = 0;
        memset(len,0,sizeof(len));
        memset(color,0,sizeof(color));
        int temp;
        for (int i = 0; i < n; i++){
            scanf("%d",&temp);
            if (color[cnt] == temp)
                len[cnt]++;
            else {
                cnt++;
                len[cnt]++;
                color[cnt] = temp;
            }
        }
        memset(dp,0,sizeof(dp));
        ans = DP(1,cnt,0);
        printf("Case %d: ",t);
        printf("%d\n",ans);
    }
    return 0;
}



阅读更多
个人分类: 动态规划
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭