题意:一棵n个节点的有根树,树的边有正整数权,表示两个节点之间的距离,你的任务是回答这样的询问,从根节点出发,走不超过x单位的距离,最多能走多少个节点,节点经过多次算一个,对于每次的询问输出:经过节点数最大的值
思路:树形DP,因为最近做的树形DP,都是三维的,最后一维表示是与否的,所以
用d[i][j][c]表示以i为根节点的树经过了j个节点,1代表不返回i,0返回i,的最短距离
所以我们单独考虑一棵树,根节点是i,起先假设它的son[i] = 1,那么初始话就是d[i][1][0]=d[i][1][1] = 0,接下来就是单独考虑它的子节点了,首先考虑如果返回的话,就一种可能就是:它走其他的子树要返回,然后还要对当前的节点要返回;如果不返回的话,那么它可能走其他的子树要返回,当前的不返回,还有就是当前的子树返回,其他的子树不返回
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXN = 550;
int d[MAXN][MAXN][2];
int n,son[MAXN],cnt[MAXN];
vector<int>g[MAXN];
void dfs(int x){
for (int i = 1; i <= n; i++)
d[x][i][0] = d[x][i][1] = 0x3f3f3f3f;
d[x][1][0] = d[x][1][1] = 0;
son[x] = 1;
for (int i = 0; i < g[x].size(); i += 2){
int y = g[x][i],len = g[x][i+1];
dfs(y);
for (int j = son[x]; j > 0; j--){
for (int k = 1; k <= son[y]; k++){
d[x][j+k][1] = min(d[x][j+k][1],d[x][j][1]+d[y][k][1]+len*2);
d[x][j+k][0] = min(d[x][j+k][0],min(d[x][j][0]+d[y][k][1]+len*2,d[x][j][1]+d[y][k][0]+len));
}
}
son[x] += son[y];
}
}
int main(){
int cas = 1;
while (scanf("%d",&n) != EOF && n){
for (int i = 0; i <= n; i++)
g[i].clear();
memset(cnt,0,sizeof(cnt));
for (int i = 1; i < n; i++){
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
cnt[u]++;
g[v].push_back(u);
g[v].push_back(w);
}
int root = 0;
for (int i = 1; i < n; i++)
if (!cnt[i])
root = i;
dfs(root);
int q,x;
scanf("%d",&q);
printf("Case %d:\n",cas++);
while (q--){
scanf("%d",&x);
int ans = 1;
for (int i = 1; i <= n; i++)
if (d[root][i][0] <= x)
ans = i;
printf("%d\n",ans);
}
}
return 0;
}