1.题目描述:点击打开链接
2.解题思路:本题属于树形dp问题,根据题意,我们会发现机器人在走的时候,需要在出发点,经过的点数以及是否返回到出发点这三条确定时候,才能完整的计算出走过的长度。因此,不妨令(u,k,flag)来表示从u出发,遍历了k个点(包括u自身),是否返回这样一种状态。这样,在遍历完u的子树的时候,可以用下面的方程来更新u:
dp(u,i,1)=min{dp(u,j,1)+dp(v,i-j,1)+2*dist(u,v)}(v=son(u));
dp(u,i,0)=min(dp(u,j,1)+dp(v,i-j,0)+dist(u,v),dp(u,j,0)+dp(v,i-j,1)+2*dist(u,v))(v=son(u));
第一个方程表示从u出发遍历i个点,可以看做从v出发遍历i-j个点,然后从不是v的子树出发遍历j个点,因为最后要返回u,因此dist(u,v)要计算2次。第二个方程表示从u出发遍历i个点,但是不返回u,那么有2种情况,一种是从v出发不返回,另一种是从u出发不返回。由于从非v的子树到达v的子树,必然会经过u,因此不会出发从2种子树出发均不返回的情况。
得到了dp数组后,那么只需要从大到小遍历一下dp(0,i,0)和dp(0,i,1),那么第一个小于等于x的i就是最终的答案。
3.代码:
#include<iostream>
#include<algorithm>
#include<cassert>
#include<string>
#include<sstream>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<list>
#include<complex>
#include<functional>
using namespace std;
#define me(s) memset(s,0,sizeof(s))
#define rep(i,n) for(int i=0;i<(n);i++)
#define pb push_back
typedef long long ll;
typedef pair <int,int> P;
const int N=500+5;
const int INF=0x3f3f3f3f;
int n,q;
int vis[N],dp[N][N][2],sum[N];
vector<P>g[N];
void dfs(int u)
{
vis[u]=sum[u]=1;
dp[u][1][0]=dp[u][1][1]=0;
int len=g[u].size();
for(int i=0;i<len;i++)
{
int v=g[u][i].first;
int val=g[u][i].second;
if(vis[v])continue;
dfs(v);
sum[u]+=sum[v];
for(int j=sum[u];j>1;j--)
for(int k=0;k<=j&&k<=sum[v];k++)//注意,k还要小于等于sum[v],因为我们是从一个子树返回后立即更新
{
dp[u][j][1]=min(dp[u][j][1],dp[u][j-k][1]+dp[v][k][1]+2*val);
dp[u][j][0]=min(dp[u][j][0],dp[u][j-k][1]+dp[v][k][0]+val);
dp[u][j][0]=min(dp[u][j][0],dp[u][j-k][0]+dp[v][k][1]+2*val);
}
}
}
int main()
{
int rnd=0;
while(~scanf("%d",&n)&&n)
{
printf("Case %d:\n",++rnd);
me(vis);me(g);
for(int i=1;i<n;i++)
{
int u,v,val;
scanf("%d%d%d",&u,&v,&val);
g[u].pb(P(v,val));
g[v].pb(P(u,val));
}
memset(dp,INF,sizeof(dp));
dfs(0);
scanf("%d",&q);
while(q--)
{
int x;scanf("%d",&x);
for(int i=n;i>=1;i--)
if(dp[0][i][0]<=x||dp[0][i][1]<=x)
{
printf("%d\n",i);
break;
}
}
}
}