Description
{p1,..., pk : p1 < p2 <...< pk} is called a prime k -tuple of distance s if p1, p2,..., pk are consecutive prime numbers and pk - p1 = s . For example, with k = 4 , s = 8 , {11, 13, 17, 19} is a prime 4-tuple of distance 8.
Given an interval [a, b] , k , and s , your task is to write a program to find the number of prime k -tuples of distance s in the interval [a, b] .
Input
The input file consists of several data sets. The first line of the input file contains the number of data sets which is a positive integer and is not bigger than 20. The following lines describe the data sets.
For each data set, there is only one line containing 4 numbers, a , b , k and s(a, b < 2 * 109, k < 10, s < 40) .
Output
For each test case, write in one line the numbers of prime k -tuples of distance s .
Sample Input
1 100 200 4 8
Sample Output
2 题意:如果有k个相邻的素数,满足pk-p1=s,称这些素数组成一个距离为s的素数k元组,输出区间[a, b]内距离为s的k元组 思路:首先筛选出素数,然后在区间[a,b]内查找满足的个数,还有我决定了以后刷选用long long#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <vector> #include <algorithm> typedef long long ll; using namespace std; const int maxn = 100005; int prime[maxn], vis[maxn], cnt; void init() { memset(vis, 0, sizeof(0)); vis[1] = vis[0] = 1; cnt = 0; for (ll i = 2; i < maxn; i++) if (!vis[i]) { prime[cnt++] = i; for (ll j = i*i; j < maxn; j += i) vis[j] = 1; } } int check(int n) { if (n < maxn) return vis[n] == 0; for (int i = 0; i < cnt && prime[i]*prime[i] <= n; i++) if (n % prime[i] == 0) return 0; return 1; } int main() { init(); int t, a, b, k, s; scanf("%d", &t); while (t--) { scanf("%d%d%d%d", &a, &b, &k, &s); int tmp = 0, ans = 0; vector<int> num; for (int i = a; i <= b; i++) if (check(i)) num.push_back(i); int size = num.size(); for (int i = 0; i+k-1 < size; i++) if (num[i+k-1] - num[i] == s) ans++; printf("%d\n", ans); } return 0; }