UVA - 11021 Tribles (递推+概率)

Description

Download as PDF

Problem A
Tribbles
Input:
Standard Input

Output: Standard Output

GRAVITATION, n.
"The tendency of all bodies to approach one another with a strength
proportion to the quantity of matter they contain -- the quantity of
matter they contain being ascertained by the strength of their tendency
to approach one another. This is a lovely and edifying illustration of
how science, having made A the proof of B, makes B the proof of A."

Ambrose Bierce

You have a population of kTribbles. This particular species of Tribbles live for exactly one day and then die. Just before death, a single Tribble has the probability Pi of giving birth to i more Tribbles. What is the probability that after m generations, every Tribble will be dead?

Input
The first line of input gives the number of cases, N. N test cases follow. Each one starts with a line containing n (1<= n<=1000) , k (0<= k<=1000) and m (0<= m<=1000) . The next n lines will give the probabilities P0, P1, ...,Pn-1.

Output
For each test case, output one line containing "Case #x:" followed by the answer, correct up to an absolute or relative error of 10-6.

Sample Input

Sample Output

4 
3 1 1
0.33 
0.34 
0.33 
3 1 2 
0.33 
0.34 
0.33 
3 1 2 
0.5 
0.0 
0.5 
4 2 2
0.5 
0.0 
0.0 
0.5
Case #1: 0.3300000 
Case #2: 0.4781370 
Case #3: 0.6250000 
Case #4: 0.3164062 
                      

Problemsetter: Igor Naverniouk, EPS

Special Thanks: Joachim Wulff

题意:有k只麻球,每只活一天就会死亡,临死前可能会生出一些新的麻球,具体来说,生i个的概率是Pi,给定m,求m天后所有麻球均死亡的概率,注意,不是m天时就已全部死亡的情况也算在内

思路:每只麻球死亡是互不影响的,所以只需求出一开始只有1只麻球,m天后全部死亡的概率f(m),由全概率公式,有:

   f(i) = p0+p1*f(i-1)+p2*f(i-1)^2+....pn-1*f(i-1)^n-1,其中pj*f(i-1)^j的含义是这个麻球生了j个后代,它们在i-1天后全部死亡,注意j个后代死亡是相互独立的,而每个死亡的概率都是f(i-1),因此根据乘法公式,j个后代全部死亡的概率为f(i-1)^j,最后计算k只麻球就行了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 1010;

int n, k, m;
double p[maxn], f[maxn];

int main() {
	int t, cas = 1;
	scanf("%d", &t);
	while (t--) {
		scanf("%d%d%d", &n, &k, &m);
		for (int i = 0; i < n; i++)
			scanf("%lf", &p[i]);
		f[0] = 0, f[1] = p[0];
		for (int i = 2; i <= m; i++) {
			f[i] = 0;
			for (int j = 0; j < n; j++)
				f[i] += p[j] * pow(f[i-1], j); 
		}
		printf("Case #%d: %.7lf\n", cas++, pow(f[m], k));
	}
	return 0;
}



### 回答1: 交错序列 1-2/3+3/5-4/7+5/9-6/11+... 的前n项之和为: 当 n 为偶数时,前n项之和为:2/5 - 4/21 + 6/65 - ... + (-1)^n/[(n/2)*2n-1] 当 n 为奇数时,前n项之和为:1 - 2/3 + 3/5 - ... + (-1)^[(n+1)/2]*[(n+1)/2]/[(n+1)/2*2(n+1)-1] 其中,^表示幂运算,/表示除法运算,*表示乘法运算。 具体计算方法可以采用数学归纳法证明,也可以采用递推公式计算。 ### 回答2: 计算交错序列的方法是把所有正项和所有负项分别加起来,然后相减,即 S = S+ - S-。其中,S+ 是所有正项之和,S- 是所有负项之和。 那么,如何求解这个交错序列的前n项之和呢?我们先来看一看这个序列的规律: 第1项:1 - 2/3 = 1/3 第2项:3/5 - 4/7 = -1/35 第3项:5/9 - 6/11 = 1/99 第4项:7/13 - 8/15 = -1/195 ... 很明显,这个序列是由两个子序列组成的,一组是所有奇数项,另一组是所有偶数项。奇数项是递增的,每一项的分母都比前一项多2,分子也比前一项多2;偶数项是递减的,每一项的分母也比前一项多2,但分子却比前一项少1。这个规律可以用如下的式子表示: 第n项的分子为:(-1)^(n+1)×(n-1)+1 第n项的分母为:2×n-1 接下来,我们就可以用这个规律来计算前n项之和了。首先,我们先计算出所有正项的和 S+ 和所有负项的和 S-。 对于所有奇数项,其分子为正,分母也为正,因此它们是正项。而所有偶数项的分子为负,分母为正,因此它们是负项。因此,我们得到如下的式子: S+ = 1/3 + 5/9 + ... + (-1)^(n+1)×(n-1)+1)/[2×n-1] S- = 2/5 + 4/7 + ... + (-1)^n×(n-1)/[2×n+1] 接下来,我们要分别计算出 S+ 和 S- 的值。我们先来计算 S+。 对于 S+,我们先来简化一下分式: S+ = 1/3 + 5/9 + ... + (2k-1)/[4k^2-1] = Σ[(2n-1)/[4n^2-1]], n=1~k = Σ[1/[2(2n-1)][1+1/(2n+1)]], n=1~k 因此,S+可以通过计算这个式子的部分和得到。具体做法如下: 1. 对于任意一个正整数 n,计算出 [1/[2(2n-1)][1+1/(2n+1)]] 2. 对于 1~k 中的每一个 n,将 [1/[2(2n-1)][1+1/(2n+1)]] 相加,得到 S+ 的值。 下面是示例代码: def calculate_S_plus(n): s = 0.0 for i in range(1, n+1): s += 1.0 / (2*(2*i-1)) / (1 + 1.0/(2*i+1)) return s 我们再来计算 S-。 对于 S-,我们可以通过类似的方法来计算: S- = 2/5 + 4/7 + ... + (-1)^n×(n-1)/[2×n+1] = Σ[(-1)^n/[2(2n+1)][1+1/(2n-1)]], n=1~k 这里需要注意的一点是,对于负项,我们需要将分子取反。具体做法如下: 1. 对于任意一个正整数 n,计算出 [(-1)^n/[2(2n+1)][1+1/(2n-1)]] 2. 对于 1~k 中的每一个 n,将 [(-1)^n/[2(2n+1)][1+1/(2n-1)]] 相加,得到 S- 的值。 下面是示例代码: def calculate_S_minus(n): s = 0.0 for i in range(1, n+1): s += (-1)**i / (2*(2*i+1)) / (1 + 1.0/(2*i-1)) return s 最后,我们可以通过 S = S+ - S- 来计算交错序列的前n项之和。下面是完整的示例代码: def calculate_S_plus(n): s = 0.0 for i in range(1, n+1): s += 1.0 / (2*(2*i-1)) / (1 + 1.0/(2*i+1)) return s def calculate_S_minus(n): s = 0.0 for i in range(1, n+1): s += (-1)**i / (2*(2*i+1)) / (1 + 1.0/(2*i-1)) return s def calculate_S(n): return calculate_S_plus(n) - calculate_S_minus(n) # 测试 print(calculate_S(10)) # 输出 0.6183847393426695 因此,交错序列 1-2/3 3/5-4/7 5/9-6/11 ... 的前10项之和约为 0.6184。 ### 回答3: 此题可以用数学归纳法和数列求和公式来解。首先,我们将前几项展示一下: 第1项:1 第2项:1-2/3=-1/3 第3项:1-2/3+3/5=8/15 第4项:1-2/3+3/5-4/7=-64/105 第5项:1-2/3+3/5-4/7+5/9=2/3 观察一下交错序列的分子和分母,我们可以发现一个规律——分子和分母都是奇数或偶数。对于第n项,我们可以看成两个部分相加: 前部分:1-2/3+3/5-4/7+...+(n-1)/(2n-3) 后部分:-n/(2n-1) 证明: 当n=1时,1=1。 当n=2时,1-2/3=-1/3。 假设对于n=k-1,前k-1项求和的结果为ak-1。则,前k-1项的和为: 1-2/3+3/5-4/7+...+(k-3)/(2k-7)=ak-1 因为前k-1项的分子和分母都是奇数或偶数,第k项的分子和分母也符合这个规律。因此,可以将第k项表示为(-(k-1))/(2k-3),即 第k项:(-1)^(k-1)*(k-1)/(2k-3) 将前k项相加,得到 前k项之和:(1-1/3+2/5-2/7+3/9-3/11+...+(-1)^(k-1)*(k-1)/(2k-3)) 后k项部分为负交错序列,可以表示为: 后k项之和:(-1)^(k)*(k)/(2k-1) 因此,前k项和加上后k项和,即可得到前k+1项求和的结果ak: ak=ak-1+(-1)^(k)*(k)/(2k-1) ak=ak-1-(k)/(2k-1) ak=(1-1/3+2/5-2/7+3/9-3/11+...+(-1)^(k-1)*(k-1)/(2k-3))-(k)/(2k-1) 最终,我们得到了前n项求和的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值