Description
A number that will be the same when it is written forwards or backwards is known as a palindromic number. For example, 1234321 is a palindromic number.
We call a number generalized palindromic number, if after merging all the consecutive same digits, the resulting number is a palindromic number. For example, 122111 is a generalized palindromic number. Because after merging, 122111 turns into 121 which is a palindromic number.
Now you are given a positive integer N, please find the largest generalized palindromic number less than N.
Input
There are multiple test cases. The first line of input contains an integer T (about 5000) indicating the number of test cases. For each test case:
There is only one integer N (1 <= N <= 1018).
Output
For each test case, output the largest generalized palindromic number less than N.
Sample Input
4 12 123 1224 1122
Sample Output
11 121 1221 1121 题意:求小于N的回文数,这个数的回文相同的数可以缩成一个数 思路:dfs(l, r, eq):l代表左边侧长度,r代表右边的长度,eq代表是否处于边界,然后在搜索右边匹配左边的同时,枚举k,k代表连续相同的数都匹配左边的个数#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> typedef long long ll; using namespace std; char str[50]; int len; char leftnum[50], rightnum[50]; char ans[50]; ll target; ll getans(int l, int r) { ll ans = 0; for (int i = 1; i <= l; i++) ans = ans * 10 + leftnum[i]; for (int i = r; i >= 1; i--) ans = ans * 10 + rightnum[i]; return ans; } ll dfs(int l, int r, int eq) { ll ans = -1; if (l + r - 1 >= len) { if (l + r - 1 > len) return -1ll; ans = getans(l - 1, r); if (ans < target) return ans; return -1ll; } int m = eq ? str[l] : 9; for (int i = m; i >= 0; i--) { leftnum[l] = i; if ((l == 1 || leftnum[l] != leftnum[l - 1]) && !(l == 1 && i == 0) && !(l+r == len)) { for (int k = 1; k + r + l <= len; k++) { rightnum[r + k] = i; ans = max(ans, dfs(l + 1, r + k, eq && (i == m))); } } else ans = max(ans, dfs(l + 1, r, eq && i == m)); if (ans > 0 ) return ans; } return ans; } int main() { int t; scanf("%d", &t); while (t--) { scanf("%lld", &target); sprintf(str+1, "%lld", target); len = strlen(str+1); for (int i = 1; i <= len; i++) str[i] -= '0'; printf("%lld\n", dfs(1, 0, 1)); } return 0; }