POJ -- 3249 Test for Job (记忆化搜索)

题目大意:给你一个图,求一条起点(入度为0)到终点(出度为0)的路,满足所有点的val之和最大(每条边的val有正有负)。

http://poj.org/images/3249_1.gif

代码实现:

#include<cstdio>
#include<cstring>
#include<iostream>
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define MEM(a) (memset((a),0,sizeof(a)))
#define MEME(a) (memset((a),-1,sizeof(a)))
#define MEMX(a) (memset((a),0x3f,sizeof(a)))
using namespace std;
const int N=100005;
const int M=1000005;
const int INF=-1e9;
int value[N],dp[N],n,m,max_sum,top;
bool in[N];
struct Edge{
    int v;
    Edge *next;
}*head[N],e[M];
void Addedge(int from,int to){
    Edge *p=&e[top++];
    p->v=to;
    p->next=head[from];
    head[from]=p;
}
int bfs(int u){
    int& ans=dp[u];
    if(ans!=INF) return ans;
    ans=value[u];
    int tmp=INF;
    for(Edge *p=head[u];p;p=p->next){
        tmp=Max(tmp,bfs(p->v));
    }
    if(tmp!=INF) ans+=tmp;
    return ans;
}
int main(){
    int p1,p2;
    while(~scanf("%d%d",&n,&m)){
        MEM(head),MEM(in);
        top=0;
        max_sum=INF;
        for(int i=1;i<=n;++i) dp[i]=INF;
        for(int i=1;i<=n;++i) scanf("%d",&value[i]);
        for(int i=1;i<=m;++i){
            scanf("%d%d",&p1,&p2);
            Addedge(p1,p2);
            in[p2]=1;
        }
        for(int i=1;i<=n;++i){
            if(in[i]==0)
                max_sum=Max(max_sum,bfs(i));
        }
        printf("%d\n",max_sum);
    }
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值