原文链接:http://android.eoe.cn/topic/ui
分任务链接地址:
http://developer.android.com/training/improving-layouts/smooth-scrolling.html
作者:zachgenius
完成时间:2012.8.29
让 ListView 平滑滚动的关键在于将程序的主线程(UI线程)从大量的处理中解脱出来。要要保证用单独的线程来进行磁盘,网络或SQL操作。想要测试你的程序的状态, 你可以开启**StrictMode** 。
使用后台线程
使用后台线程(“工作线程”)可移除主线程中德压力,以至于集中精力绘制UI。在很多案例中,利用 AsyncTask (异步任务)可以提供一种在主线程之外执行你的工作简单的方法。 AsyncTask'''自动将所有'_execute()) 请求排成队列并按顺序执行他们。这种行为对一个特定进程来说是全局性的,这意味着你不必担心创建自己的线程池。
下方所示的简单代码中,利用**AsyncTask** 在后台线程中加载图像,然后一旦完成便应用在UI中。也可以显示一个进度条来代替正在加载的图像。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
// 利用AsyncTask在后台线程中加载缓慢的图像
new AsyncTask<ViewHolder, Void, Bitmap>() {
private ViewHolder v;
@Override
protected Bitmap doInBackground(ViewHolder... params) {
v = params[0];
return mFakeImageLoader.getImage();
}
@Override
protected void onPostExecute(Bitmap result) {
super.onPostExecute(result);
if (v.position == position) {
// 如果该项还未被回收, 隐藏进度条,设置并显示图像
v.progress.setVisibility(View.GONE);
v.icon.setVisibility(View.VISIBLE);
v.icon.setImageBitmap(result);
}
}}.execute(holder);
|
从Android3.0(API Level 11)起,在** AsyncTask** 中可以使用一项新的功能,你可以通过开启它来
在多处理器内核间交叉运行线程。除了调用** execute())**方法,你可以使用**executeOnExecutor())** 方法而同时执行多个请求,而这取决于可用的核心数量。
在View Holder中保存视图对象
你的代码可能在滑动** ListView**时频繁地调用**findViewById())**,而这可使效果变慢。即使在**Adapter**为了回收而返回一个已经展现出来的视图,你仍然需要查找这些元素并且更新他们。一个循环使用**findViewById())** 的方法是使用“view holder”设计模式。
一个**findViewById())** 对象存储布局内的每个组建视图的标记域,你可以立即访问而不需要反复的查询他们。首先,你需要建立一个类来保存具体的视图。例如:
1 2 3 4 5 6 |
static class ViewHolder {
TextView text;
TextView timestamp;
ImageView icon;
ProgressBar progress;
int position;}
|
然后填充**findViewById())** 并且在布局中保存它。
1 2 3 4 5 6 |
ViewHolder holder = new ViewHolder();
holder.icon = (ImageView) convertView.findViewById(R.id.listitem_image);
holder.text = (TextView) convertView.findViewById(R.id.listitem_text);
holder.timestamp = (TextView) convertView.findViewById(R.id.listitem_timestamp);
holder.progress = (ProgressBar) convertView.findViewById(R.id.progress_spinner);
convertView.setTag(holder);
|
现在你可以轻松的访问每一个视图而不需要频繁的去查询他们,这节省了宝贵的处理器周期。