自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(220)
  • 收藏
  • 关注

原创 【学习笔记】Mega-TTS:基于内在归纳偏置的大规模零样本文本到语音合成技术解析

Mega-TTS通过深度挖掘语音的内在属性,以模块化设计匹配各组件的归纳偏置,结合大规模多领域数据的训练,实现了零样本语音合成的质量、鲁棒性与泛化能力的全面提升。其核心创新不仅为大规模TTS技术提供了新的设计思路,也为语音编辑、跨语言合成等下游任务的优化奠定了基础,有望推动个性化语音合成技术在影视制作、智能助手、无障碍通信等领域的广泛应用。音频样本可参考:https://mega-tts.github.io/demo-page。

2025-12-15 15:36:58 570

原创 【学习笔记】5G RedCap:智能回落5G NR驻留的接入策略

摘要: 5G R17引入的RedCap技术为中低速物联网设备接入5G网络提供了关键解决方案。其核心在于智能适配机制:终端通过检测SIB1消息判断网络支持性,支持时按R17标准接入,否则通过带宽适配或协议回落至R15/16模式实现兼容。这种自适应能力既保障了现有网络下的连接可靠性,也支持运营商平滑升级。作为5G向“能力分级”演进的重要体现,RedCap未来将与5G-Advanced的AI、能效优化等技术深度融合,并为6G的海量设备接入奠定基础,推动物联网规模化部署。

2025-12-09 09:41:42 680

原创 3GPP ProSe通信关键技术研究:基于PC3/PC5接口与发现模型的深度解析

摘要:随着5G/6G技术演进,设备直连(D2D)通信成为降低时延、提升效率的关键。本文基于3GPP TS 24.333/334协议,深入剖析ProSe技术中PC3控制接口与PC5通信接口的协同机制。首先解析PC3接口的网络发起取消与验证流程,包括信令交互与状态管理;其次阐述PC5接口的安全通信建立过程;最后对比Model A/B两种发现模型的机制差异与应用场景。通过公共安全用例,完整展示从策略配置、服务授权到会话终止的全生命周期管理,为ProSe实现与优化提供理论支撑。 关键词:ProSe;D2D通信;PC

2025-11-16 15:02:55 656

原创 【学习笔记】3GPP ProSe(D2D)与 LTE/5G 设备到设备通信技术综述及协议实现(二)

TS 24.333 定义了一个完整、树状的 DDF(Device Description Framework)结构,用于向 UE 写入 ProSe 参数。ProSe 的核心能力之一是对“邻近设备”进行识别与准入控制,而不是任意设备皆可通信。TS 24.334 规定 PC5 上的“逻辑流程”,物理层在 TS 36.331 / TS 38.331 中规定。通过 TS 24.333 的 Provisioning MO 实现“上层 → 物理层”的 ID 映射。说明 Discovery UE ID 对系统的重要性。

2025-11-16 14:27:41 1041

原创 【学习笔记】3GPP ProSe(D2D)与 4G/5G 设备到设备通信技术综述及协议实现(一)

通过 TS 24.333 与 TS 24.334 的结合,3GPP 为 ProSe 提供了一套完备的框架,从 UE 配置(MO)、网络授权控制(PC3)、再到实际的 D2D 数据传输(PC5),构成一个完整的设备到设备通信系统。随着移动通信技术的发展,传统以蜂窝基础设施为中心的数据通信模式已无法满足低时延、高可靠性和高用户密度等新兴需求。,并在公共安全、车联网(V2X)、工业物联网、群组通信等典型场景中发挥越来越重要的作用。UE 的发现能力、通信能力、策略限制、授权参数都由管理对象配置。

2025-11-16 14:21:47 821

原创 【学习笔记】Redis数据库设计与实现研究综述

Redis是一种高性能开源内存数据库,广泛应用于缓存、会话管理等场景。本文系统分析了Redis的体系架构、内部数据结构、对象管理机制、持久化策略及分布式特性,揭示其高性能与高可靠性的核心设计思想。Redis采用单线程I/O多路复用模型,通过精心优化的数据结构(如SDS、跳表)和灵活的对象编码机制实现高效内存管理。其持久化包括RDB快照和AOF日志两种方式,支持主从复制、哨兵和集群模式实现高可用。典型应用场景涵盖缓存、计数器、分布式锁等。文章还探讨了数据一致性保障策略,并展望了Redis未来发展方向。

2025-10-05 16:31:22 1040

原创 【标准提案分析】3GPP提案:IMS增强以支持通过NB-IoT GEO卫星的语音业务

本文探讨了5G NTN场景中GEO卫星IMS语音呼叫建立时延的优化方案。GEO卫星的高时延和带宽受限特性导致传统IMS流程难以满足30秒呼叫建立时延要求。主流厂商提出了多种优化思路:1)信令压缩(SigComp/二进制编码);2)SDP协商前置;3)SIP头裁剪;4)取消pre-condition;5)P-CSCF增强代理能力。各方案可缩短信令量40-50%,将时延降至8-16秒(GEO-TN)或16-32秒(GEO-GEO)。未来需整合多层次优化框架,并解决新老流程兼容性问题,以实现SA1提出的时延目标。

2025-09-01 20:32:02 1113

原创 【深度学习】配分函数:近似最大似然与替代准则

本文探讨了深度学习能量模型中配分函数的计算难题及其解决方案。以《Deep Learning》教材为参考,系统分析了处理配分函数的两种主要思路:近似最大似然训练(如对比散度CD、持续对比散度PCD)和替代训练准则(如伪似然、得分匹配、噪声对比估计NCE)。文章详细介绍了各种方法的原理、优缺点及适用场景,特别强调了CD的高效性及其探索不足的缺陷,PCD的持续性改进,以及FPCD通过参数分离加速采样的创新。此外,还讨论了配分函数估计技术(如退火重要性采样AIS),为处理高维概率模型的归一化问题提供了全面指导。

2025-08-31 18:08:16 1067

原创 【卫星通信】超低码率语音编码ULBC:EnCodec神经音频编解码器架构深度解析

EnCodec是Meta AI提出的端到端神经音频编解码器,采用编码器-解码器架构实现高压缩音频传输。编码器通过4个残差卷积块(步长2/4/5/8)将音频压缩320倍为64通道潜在表示,配合双向LSTM进行序列建模。核心创新包括残差矢量量化(RVQ)和多尺度对抗训练,在24kHz/48kHz采样率下分别实现75/150步/秒的压缩率。模型通过重建损失、对抗损失和量化约束联合优化,在SI-SNR、ViSQOL等指标上超越传统编解码器,MUSHRA评分达高质量水平。该架构突破传统压缩极限,支持3-12kbps超

2025-08-23 20:45:50 1267

原创 【深度学习】蒙特卡罗方法:原理、应用与未来趋势

本文基于《深度学习》一书中的蒙特卡罗方法章节,系统介绍了蒙特卡罗方法在深度学习中的应用。文章首先阐述了蒙特卡罗方法的基本原理,包括随机采样、无偏估计和收敛性分析。随后重点讨论了三种关键技术:直接采样/拒绝采样、重要性采样和马尔可夫链蒙特卡罗(MCMC),详细说明了Metropolis-Hastings、Gibbs采样和Hamiltonian Monte Carlo等算法的实现原理。最后探讨了这些方法在能量基模型等深度模型中的推断应用,为解决高维空间中的采样和期望估计问题提供了有效工具。全文通过理论分析和方法

2025-08-23 16:34:16 929

原创 【深度学习】深度学习中的结构化概率模型:理论、方法与应用

本文系统介绍了结构化概率模型(图形化模型)在深度学习中的应用与发展。文章首先概述了有向图(如贝叶斯网络)和无向图(如马尔可夫随机场)两类模型的基本概念与表示方法,重点分析了其联合分布分解和条件独立性特点。随后深入探讨了深度学习与概率图模型的结合方式,包括玻尔兹曼机、变分自编码器(VAE)等深度生成模型,以及隐马尔可夫模型(HMM)等序列化结构。文章还阐释了图结构在推理算法(如变量消元、消息传递)中的优势,并展望了该领域未来与神经网络深度融合的发展趋势。通过理论分析与实例展示,揭示了结构化概率模型作为连接传统

2025-08-23 15:56:46 1125

原创 高精度GNSS定位技术的介绍 ——RTK、PPP 与 PPP-RTK 的原理、性能、应用与未来趋势

高精度GNSS定位技术主要包括RTK、PPP和PPP-RTK三种方法。RTK通过基站差分实现厘米级实时动态定位,适用于农业、工程测量等领域;PPP无需基站,利用精密卫星数据实现亚米级定位,适合偏远地区应用;PPP-RTK融合两者优势,兼具高精度与广域覆盖特点,在智能交通、无人机航测等领域展现出巨大潜力。随着技术进步,这些方法将为无人驾驶、精准农业等新兴领域提供更强大的定位支持,推动相关行业创新发展。

2025-07-31 15:54:12 1776

原创 【卫星语音】基于神经网络的低码率语音编解码(ULBC)方案架构分析:以SoundStream为例

随着深度学习技术的快速发展,基于神经网络的音频编解码技术已成为下一代音频压缩的重要研究方向。本文以Google提出的SoundStream为核心分析对象,深入探讨其在低码率语音编解码领域的创新架构设计和关键技术突破。SoundStream通过全卷积编解码器网络和残差向量量化器的端到端联合训练,实现了在3-18 kbps码率范围内的高质量通用音频压缩。本文从架构设计原理、核心组件分析、训练策略优化、性能评估等多个维度对SoundStream进行系统性分析,并探讨其在实际应用中的优势与局限性。

2025-07-06 19:08:09 1145

原创 【卫星通信】超低比特率语音编解码器(ULBC)的信道特性评估

随着卫星通信需求的增长,超低比特率语音编解码器(ULBC)因其低时延特性成为关键技术。本文基于华为3GPP提案,分析GEO卫星通信中的信道特性(如延迟、丢包率等)对ULBC设计的影响。研究表明,全双工操作需优化无线资源分配(如77%DL/23%UL)以平衡语音质量,链路预算仿真揭示CNR、BLER等参数对系统性能的作用。通过联合优化编解码器和无线接入单元,可实现高效可靠的ULBC方案,为卫星语音通信提供关键支持。(149字)

2025-07-03 22:24:27 773

原创 【卫星通信】3GPP标准提案:面向NB-IoT(GEO)场景的IMS信令优化方案-降低卫星通信场景下的语音呼叫建立时延

随着5G非地面网络(NTN)技术的演进,基于NB-IoT的卫星通信(如GEO地球同步轨道卫星)逐渐成为偏远地区语音服务的重要补充。然而,传统IP多媒体子系统(IMS)的信令流程在带宽受限、时延较高的卫星链路中面临显著挑战。2025年5月,vivo、MediaTek、ZTE、OPPO等厂商联合向3GPP SA WG2提交提案(S2-2504682),针对NB-IoT(GEO)场景提出IMS信令优化方案,旨在通过减少SIP协议消息数量与负载大小,显著降低语音呼叫建立时延。

2025-06-14 23:21:56 1529

原创 【卫星通信】Skylo与ViaSat标准建议详解:基于NB-IoT NTN通过GEO卫星实现IMS语音通话的解决方案

2025年5月,Skylo与ViaSat在3GPP会议上联合提交提案S2-2504596,提出通过GEO卫星支持NB-IoT NTN接入EPC时的IMS语音方案。针对高时延(800-1000ms)和窄带限制(180kHz),提案采用UP NIDD技术降低协议开销(仅5字节),并通过I1轻量化协议替代传统SIP信令。核心创新包括:信令与媒体分离:为QCI差异化分配独立DRB;紧急呼叫优化:支持匿名呼叫和eCall数据透传;终端简化:利用SCC-AS集中处理IMS逻辑,终端无需完整SIP栈。该

2025-06-14 19:31:39 1447

原创 【卫星通信】高通提案S2-2504588解读-基于控制平面优化的GEO卫星IMS语音解决方案

3GPP SA2工作组通过的高通提案S2-2504588提出利用控制平面CIoT EPS优化技术,在静地轨道卫星(GEO)上为NB-IoT设备提供IMS语音服务的技术方案。该方案通过将IMS信令流与语音媒体流分别映射到独立信令无线承载(SRB),解决了高时延(250-300ms)与低功耗设备实时通信的矛盾。采用IP或非IP(NIDD)PDN连接适配不同场景,复用默认EPS承载简化流程,并通过协议栈优化降低延迟。尽管面临QoS保障和带宽限制等挑战,这一轻量化方案为卫星与5G融合提供了实用过渡方案。

2025-06-14 17:02:36 1136

原创 【卫星通信】卫星与5G深度融合的架构研究——释放非地面网络潜能,构建全球无缝连接【3GPP TR 23.700-19 V0.1.0 (2025-04)】

3GPP TR 23.700-19作为Release 20阶段的重要技术报告,系统研究了卫星通信与5G网络的融合路径。报告聚焦卫星接入下的IMS语音通信和UE-SAT-UE直连两大方向,提出分层架构设计、IMS增强、NB-IoT参数优化等解决方案,以应对高时延、移动性管理等技术挑战。该标准为未来6G"天地一体化网络"奠定基础,但卫星通信规模化商用仍需解决频谱分配、终端兼容性等产业生态问题。随着低轨星座部署加速,5G NTN有望在5年内实现商用,填补全球80%以上无覆盖区域的通信空白。

2025-06-14 12:42:14 1423

原创 【深度学习】表示学习:深度学习的数据解构与重构艺术

表示学习作为深度学习的灵魂,已经从早期的无监督预训练突破,发展成为一门融合监督、无监督、半监督、迁移学习、领域自适应等多种范式,并追求分布式、解耦、因果、不变性等优良特性的综合性学科。它赋予了机器从原始数据中自动提取有价值知识的能力,彻底改变了人工智能处理信息的方式。

2025-06-08 22:19:13 1127

原创 【深度学习】自编码器:数据压缩与特征学习的神经网络引擎

作者选择了由 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 三位大佬撰写的《Deep Learning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【深度学习】线性因子模型:数据降维与结构解析的数学透镜【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RNN)【学习笔记】理解深度学习和机器学习的数学基础:数值计算【学习笔记】理解深度学习的基

2025-06-01 08:22:53 1321

原创 【深度学习】线性因子模型:数据降维与结构解析的数学透镜

线性因子模型家族,从经典的PCA、因子分析、ICA,到更现代的稀疏编码和贝叶斯扩展(如PPCA),为我们提供了一系列强大的数学透镜。它们通过线性变换的框架,或揭示数据背后的潜在驱动因素(隐变量),或分离混杂的独立源信号,或学习具有生物合理性的稀疏特征表示,或近似数据的低维流形结构。理解这些模型的原理、联系与差异,是掌握现代数据分析与特征学习技术的坚实基础。它们虽以“线性”为名,却在理解复杂世界的非线性数据中扮演着不可或缺的角色。

2025-05-31 23:16:20 814

原创 【卫星通信】通信卫星链路预算计算及其在3GPP NTN中的应用

摘要 卫星链路预算是卫星通信系统设计的关键环节,用于评估信号传输过程中的衰减和增益。计算过程涉及发射功率、天线增益、传播损耗(包括自由空间损耗、闪烁损耗、大气损耗等)以及接收机灵敏度等因素。重点介绍了自由空间传播损耗公式(L_FSPL=20log10(d)+20log10(f)+32.44)和接收灵敏度公式(S=-174+10log10(B)+NF+C/N)。文章还详细分析了3GPP NTN标准中的五种卫星链路模型参数,包括不同轨道高度下的损耗特性和天线配置。这些计算为卫星通信系统性能评估提供了理论基础。

2025-05-24 20:19:35 1986 1

原创 【学习笔记】深度学习:典型应用

深度学习的应用正在各个领域快速扩展和深入,从传统的计算机视觉、自然语言处理到广泛的知识图谱、语音识别和推荐系统,涵盖了社会生活的各个方面。随着技术的不断改进,深度学习将会在更多行业和场景中得到应用。模型泛化能力:提高模型在各种任务和不同数据集上的表现,而不仅限于训练数据。少样本学习:研究如何在极少量样本的情况下进行有效学习,从而解决冷启动问题。跨领域应用:深度学习在不同任务和领域间的结合,促进交叉应用的可能性。可解释性:深入研究深度学习模型的解释性,使非专家用户能够理解 AI 系统的决策过程。

2025-05-04 23:26:12 1182

原创 【学习笔记】 强化学习:实用方法论

街景地址转录项目取得了巨大的成功,实现了对数亿个地址的快速转录,这在成本上显著低于人工处理的成本。通过自动化,提高准确来保证商业价值,系统不仅提升了处理效率,覆盖率和准确率两者达成平衡,验证了本章提出的设计原则在实际应用中的有效性。这些设计原则将为未来的类似项目提供指导,助力更多成功的应用案例。

2025-05-03 12:38:55 1068

原创 【学习笔记】第十章:序列建模:递归神经网络(RNN)

递归神经网络作为一种强大的序列建模工具,因其出色的表达能力被广泛应用于自然语言处理、时间序列预测等领域。尽管训练 RNN 存在一定的挑战,但通过 LSTM、GRU 等先进结构的应用结合显式记忆的概念,可以有效提升模型的性能与适应性。通过深入学习 RNN 及其变体的运作原理,以及在不同应用场景中的表现,我们能够更好地理解这一强大工具的潜力与未来发展方向。随着技术的进步,RNN 在序列数据中的应用将越来越广泛,为各类实际问题的解决提供更多可能性。

2025-05-02 13:52:40 833

原创 【一文读懂】大模型Agent核心MCP协议解析:构建物理世界与智能模型的桥梁

MCP(Model Context Protocol)最初由Anthropic公司于2024年11月提出 [ref:4,8],核心目标是构建一种通用通信标准,使大语言模型能够方便地通过有限且规范的接口与外部世界交互。由于AI与物联网深度融合已成为行业趋势,为了让AI更好地与温度传感器、智能家居、中控系统等设备进行双向交互,业界亟需一种兼容性强、功能丰富、扩展性好的通信协议 [ref:7]。

2025-04-12 13:19:17 1958

原创 【STK卫星仿真软件】航天卫星与通信仿真多功能利器

STK是由美国 Analytical Graphics Inc.(AGI)公司研发的航天及国防领域专业系统分析软件,最初用于卫星轨道与任务分析,现已逐步扩展至航空、海洋、地面及电子对抗等多种任务场景。其核心价值在于能够根据复杂的数学模型与仿真算法,精确计算和模拟不同对象(卫星、地面站、飞机、导弹、城市等)在不同时刻和环境下的运行与交互关系,并提供丰富的可视化方式(2D/3D 动态场景及图表报告)。

2025-03-28 23:08:06 3484

原创 【NR NTN 3GPP协议】非地面网络(NR NTN)3GPP协议简介

这是NTN的基础性报告,定义了NTN的应用场景、网络架构、信道模型(如传播延迟和多普勒效应)、同步机制以及部署频段(如L/S/Ku/Ka频段)。如需获取最新进展,建议查阅3GPP官方网站(https://www.3gpp.org/)的Release 18及后续文档。系统架构中新增NTN相关功能模块,如卫星网关(Gateway)和星上处理单元,支持透明载荷和再生载荷两种模式。定义NTN基站的发射功率、频段兼容性及多普勒预补偿要求,例如支持高达±200 kHz的频率偏移。

2025-03-23 13:32:22 2397

原创 【学习笔记】卷积网络简介及原理探析

通过上述内容可以看出,卷积网络从神经科学实验的启发到广泛用于现代计算机视觉等领域,中间经历了长时间的理论与实践发展。其核心在于对局部感知与权值共享的理念进行数学化与工程化实现,结合多层次特征提取机制,能够有效抽象出从边缘到复杂形状再到语义概念的高级信息。同时,多维卷积、高效计算手段以及与其他神经网络结构的结合,使得它在日益复杂的视觉、语音、文本乃至多模态任务中持续发挥关键作用。综上所述,卷积网络是深度学习时代的中流砥柱。

2025-03-23 11:45:12 1341

原创 并行计算编程模型的发展方向与RISC-V的机遇

Triton通过提供更高级的抽象,自动完成内存管理和Tensor Core调度,从而简化了大模型编程的复杂性。并行计算编程模型正朝着更高层次的抽象、更高的开发效率和更好的可移植性发展。通过指令扩展、软硬件协同和开放的编程模型,RISC-V可以为各种并行计算应用提供高效、灵活的解决方案。例如,Triton是一种面向AI计算的DSL,它采用Python语法,并提供了更粗粒度的数据并行抽象,减轻了程序员对底层硬件的关注。通过定制化的硬件加速器和优化的编译器,可以实现更高的性能和能效。

2025-03-10 13:26:16 536

原创 【卫星语音通信】神经网络语音编解码算法:AudioDec

最新研究表明,通过深度学习模型对语音信号进行智能压缩与重建,可在12 kbps码率下实现48 kHz采样率的高保真语音还原,其主观音质评分(MOS)可达3.9分(满分4.27分),远超传统参数编码技术。这意味着未来卫星电话的通话质量有望达到CD级水准,而蜂窝网络的语音业务带宽需求可降低60%以上,为蜂窝和卫星网络中的大规模物联网语音交互铺平道路。它的诞生为神经音频编解码技术带来了一次重要升级,有助于让未来实时语音交互更流畅、更清晰,也让我们进一步体验到人工智能与音频信号处理结合所带来的创新可能性。

2025-03-02 13:21:07 1332

原创 【语音编解码】常用的基于神经网络的语音编解码方案对比

当前主流神经网络语音编解码方案中:Google Lyra(3kbps, RNN+传统处理)专攻实时通信;Meta EnCodec(6-24kbps动态码率)以50ms延迟适配VR/AR;SoundStream(Transformer+对抗训练)实现近Opus音质的流媒体编码;LPCNet(1.6kbps)以CPU实时推理服务IoT设备;WaveNet生成质量最优(MOS 4.7)但延迟高,适用于语音合成;DDSP通过可解释谐波建模支撑音乐处理。技术向端到端架构、动态码率及与传统编码融合演进。

2025-02-27 15:07:22 1244

原创 【论文学习】基于规模化Transformer模型的低比特率高质量语音编码

根据文档中所述,早期的神经音频编解码研究主要集中在VQ-VAE(Vector Quantized Variational AutoEncoder)的结构上,遵循“编码器-量化-解码器”的三段式流水。Soundstream、EnCodec等工作通过残差矢量量化(RVQ)方法,利用多个层级的码本来增强对输入特征空间的表示能力。随着研究的深入,这类模型在语音、通用音频(如音乐、环境音)等多种类型的任务中均有不错的表现。

2025-02-24 22:43:56 1290

原创 【学习笔记】Google的Lyra项目:基于神经网络的超低比特率语音编解码技术

Lyra的技术突破不仅重新定义了语音编解码的性能边界,更开创了"神经网络编解码"的新范式。随着开源社区的持续优化和硬件生态的成熟,这项技术正在从实验室走向大规模商用,助力构建真正全球覆盖的智能语音网络。对于研究者而言,Lyra的开放架构为探索混合编码、元学习优化、脑机编码等前沿方向提供了绝佳试验场。在AI与通信技术深度融合的今天,Lyra的成功预示着属于智能语音的"摩尔定律"正在加速到来。项目地址。

2025-02-24 21:52:32 1181

原创 【深度解析】图解Deepseek-V3模型架构-混合专家模型(MoE)

混合专家(Mixture of Experts,简称 MoE)模型,是一种利用多个不同的子模型(或“专家”)来提升大语言模型(LLM)质量的技术。模型中的每个专家都是一个独立的神经网络,专门处理输入数据的特定子集或特定任务。例如,在自然语言处理任务中,一个专家可能专注于处理与语言语法相关的内容,而另一个专家可能专注于语义理解。门控网络的作用是决定每个输入样本应该由哪个专家或哪些专家来处理。它根据输入样本的特征计算出每个专家的权重或重要性,然后根据这些权重将输入样本分配给相应的专家。

2025-02-16 21:51:39 9467

原创 【一文读懂】Deepseek-V3 核心技术解析(基于Deepseek官网论文分析)

本文内容来自Deepseek官方的技术论文:图一. DeepSeek的《DeepSeek-V3》论文截图DeepSeek-V3 的核心技术展示了其在大规模模型设计和优化方面的创新性。

2025-02-16 19:33:28 1617

原创 【学习笔记】深度学习网络-深度模型中的优化

本篇文章从机器学习问题如何转换成优化问题的角度出发,阐述了模型优化在深度学习中的重要性和复杂性,并详细介绍了常见的梯度下降变体、局部极小值与鞍点挑战、自适应学习率方法以及正则化等核心内容。希望通过以上介绍,读者能对深度模型优化的核心意义、难点和已有解决方案有所了解,并对在深度学习训练中如何挑选和调试优化算法形成更清晰的思路。在实际使用过程中,应结合数据的特点、计算资源、模型规模以及具体任务目标,综合运用多种手段来让模型更可靠地逼近“最优解”,从而在真实环境中创造价值。

2025-02-16 17:08:59 1098

原创 【知识速递】DeepSeek推动大模型低成本本地化部署-模型知识库与模型微调对比

DeepSeek通过创新架构实现大模型部署成本大幅度降低,目前很多公司纷纷开展大模型的本地化部署,针对不同行业的需求,大家会采用模型知识库和模型微调的方式增强模型的专用能力增强。实际应用中常采用混合方案:用微调塑造基础能力,叠加知识库补充动态信息。:外部知识存储与检索系统。:模型参数的定向优化。

2025-02-14 11:18:51 548

原创 【DeepSeek】Deepseek辅组编程-通过卫星轨道计算终端距离、相对速度和多普勒频移

不同轨道半长轴(a)不同偏心率(e)不同轨道倾角(i)不同升交点赤经(Ω)不同近地点幅角(ω)不同真近点角(ν)

2025-02-09 16:18:57 2379

原创 【一文读懂】卫星轨道的轨道参数(六根数)和位置速度矢量转换及其在终端距离、相对速度和多普勒频移计算中的应用

本文首先介绍了卫星轨道的六根数参数:半长轴 a、偏心率 e、轨道倾角 i、升交点赤经 Ω、近地点幅角 ω 以及真近点角 ν,并探讨了如何利用这些参数计算卫星与地面终端之间的距离、相对速度及由此产生的多普勒频移。利用开普勒运动公式计算当前瞬间的轨道半径;根据真近点角 ν 在围心坐标系中计算位置矢量和速度矢量;利用旋转矩阵(依次旋转 ω、i、Ω)将围心坐标系的状态矢量转换到地心惯性坐标系;最终结合地面终端信息,计算卫星与终端的欧氏距离、沿视线的相对速度及多普勒频移。

2025-02-09 12:34:25 7331 1

中国移动5G-A无线融合新架构白皮书-2024.pdf

近日,在2024“5G-A技术创新及数智应用发展论坛”上,中国移动联合产业合作伙伴共同发布《5G-A无线融合新架构白皮书》,标志着中国移动在推动5G-A技术发展道路上迈上新台阶,为构建更加开放、协同、创新的5G-A生态系统奠定了坚实基础。 白皮书要点: 1. 5G-A 无线架构演进驱动力 政策指引: 国家政策推动数字经济和5G-A技术的发展,为网络架构演进提供方向。 业务驱动: 新业态 (如低空经济、车联网) 对网络感知、算力和智能化能力提出更高要求。 技术牵引: 通信、感知、智能化技术融合,推动网络架构向更高效、智能的方向演进。 2. 5G-A 无线架构演进面临挑战 网络层面: 现有海量资产需要兼容新业务,设备需要支持通感算智融合。 业务层面: 新业务应用范围、发展态势和商业模式不确定,需要网络具备灵活性和可扩展性。 运营层面: 新业务初期投资压力大,回报周期长,需要降低运营成本。 3. 5G-A 无线融合新架构 架构设计理念: 平滑演进、通专异构、弹性扩容。 架构具体阐述: 新硬件平台 (CCU、BBU、AAU+) 和新组网架构 (自组自愈、弹性可伸缩)。

2024-09-05

卫星网络(NTN)的窄带物联网(NB-IoT)/增强型机器类型通信(eMTC)研究 - 3GPP TR 36.763

关于卫星网络(NTN)的窄带物联网(NB-IoT)/增强型机器类型通信(eMTC)研究,特别是3GPP TR 36.763文档,随着地面移动通信的发展,虽然人们享受到了便捷的互联网服务,但地球上仍有大量区域缺乏通信手段。特别是在发生自然灾害时,地面移动通信系统可能因断电、断网而无法提供服务。因此,非地面网络(NTN)作为地面移动通信系统的延伸,为偏远地区和应急通信提供了重要解决方案。NTN主要包括卫星通信网络(如LEO、MEO、GEO卫星)和高空/空中平台网络(如飞机、气球、飞艇等)。 3GPP在Release 15至Release 17阶段对NTN进行了深入研究,旨在将卫星通信与移动通信融合,解决无服务或服务不足地区的服务可达性和连续性问题。其中,Release 17阶段完成了NTN的第一个标准,但主要聚焦于NTN接入网的“透明”架构和移动协议的改进。进入Release 18阶段后,3GPP立项了一系列关于NTN的增强研究项目,包括IoT NTN增强等。

2024-08-20

3GPP TS 24.577 V18.1.0的技术规范 Aircraft-to-Everything (A2X) service

3GPP TS 24.577 V18.1.0的技术规范,主要定义了5G系统中A2X通信的协议方面,特别是在PC5接口和Uu接口上的A2X服务。以下是文件的核心内容分析:

2024-08-15

3GPP TS 22.125 V19.2.0 (2024-06)Uncrewed Aerial System (UAS) sup

这份文件是3GPP TS 22.125 V19.2.0,定义了3GPP系统对无人飞行器(UAV)的支持要求。文件涵盖范围、参考模型、远程识别、使用场景、性能、安全等方面: 范围与概述:明确使用3GPP系统操作UAV的业务、安全和公共安全需求。 参考模型:提供UAS在3GPP生态中的模型,包括UAV、控制器、UTM等。 远程识别:要求系统支持UTM识别UAV及其控制器,传输详细数据,检测未授权操作。 使用场景:规定网络暴露、服务限制、C2通信、UAV安全等要求,确保UAV高效运营。 飞行路径管理:系统需根据请求重新配置资源,监测飞行路径偏差和违规。 性能要求:详细列出UAV应用、C2通信和定位的性能指标,确保服务质量。 安全与隐私:保护数据传输,防止身份伪造,保障隐私信息。 此文件为3GPP系统支持UAV操作提供全面指导,促进UAS在商业和民用领域的安全应用。

2024-07-15

3GPP TS 23.256 技术报告-无人机系统(UAS)的连接、识别和跟踪

这份文件是3GPP TS 23.256 V18.3.0技术规范,专注于3GPP系统对无人机的全面支持。文件定义了无人机的认证、授权及跟踪流程,确保操作安全合规。列出了关键术语、缩写和参考文档,提供了详细的架构模型,展示了无人机在5G和EPS中的集成方式。 文件描述了功能实体如UAS NF、AMF、SMF等在支持无人机中的作用及其交互。重点介绍了无人机的认证授权(UUAA)流程,包括注册和PDU会话建立过程。同时,定义了C2通信的授权流程,保障无人机与控制器间安全通信。 此外,提出了无人机跟踪模式、直接C2通信机制、广播远程识别(BRID)和探测与避障(DAA)机制,增强了无人机的安全性和避障能力。A2X服务章节定义了通信架构、授权、参数配置和QoS处理,支持无人机在复杂环境中的高效通信。 总之,这份技术规范为无人机在3GPP系统中的集成、操作和安全提供了全面的技术指导和实现框架。

2024-07-16

3GPP TS 38.211 V18.3.0 (2024-06) Physical channels and modulatio

3GPP TS 38.211是5G NR物理层的关键规范,主要涉及物理信道和调制。它详细描述了5G NR的物理信道结构,如物理上行共享信道和物理下行共享信道,并采用OFDM技术进行调制。 该规范定义了多种参数集,包括不同的子载波间隔和循环前缀配置,以适应不同的应用场景。此外,它还规定了5G NR的帧结构,由时隙、子帧和OFDM符号组成,明确了时频资源网格中物理信道及信号的分配和映射方式。 导频信号在5G NR中至关重要,用于信道估计和均衡,其位置和模式在规范中也有详细规定。 最后,3GPP TS 38.211与其他相关规范共同构成了完整的5G NR物理层标准,确保了设备间的兼容性和互操作性。对于5G NR技术的研发和应用,这份规范提供了重要的指导和参考。

2024-07-14

3GPP TR 22.829 R17 Enhancement for Unmanned Aerial Vehicles

专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。 无人机高清视频直播:支持4K乃至8K视频实时上传,要求低延迟、高可靠性和精确定位,以避免事故。 无人机作为空中基站:在灾难监测等场景中,无人机携带基站设备,提供临时覆盖,强调快速部署和灵活配置。 无人机命令与控制(C2)通信:定义了直接C2、网络辅助C2等多种模式,强调QoS保障和安全性,以适应不同飞行环境和需求。 无人机与地面用户共存:探讨了无人机与增强型移动宽带(eMBB)用户共享网络资源时的干扰最小化问题。 自主无人机控制:AI系统通过5G网络控制无人机,对上下行传输提出了高带宽和低延迟要求,并需要高精度定位信息。 无人机群管理:支持无人机群在物流等领域的应用,强调群管理和协同作业能力。 服务可用性和体验保障:提出通过边缘计算和路径优化,确保无人机通信服务的低延迟和高可靠性。 最后总结了无人机通信服务的潜在要求,并建议3GPP制定相关服务规范

2024-07-13

RISC-V 向量扩展指令集 - V Vector Extension

这是一份关于向量扩展的详细技术文档,内容覆盖了向量指令集的多个关键方面,如向量寄存器状态映射、向量指令格式、向量加载和存储操作、向量内存对齐约束、向量内存一致性模型、向量算术指令格式、向量整数和浮点算术指令、向量归约操作、向量掩码指令、向量置换指令、异常处理以及标准向量扩展等。 首先,文档定义了向量元素和向量寄存器状态之间的映射关系,并阐述了向量指令的格式。在此基础上,提出了配置设置指令,如vsetvl、ivsetiv和vlsetvl,用于设定向量长度(VL)和向量对齐长度(AVL)。 接着,文档详细说明了向量加载和存储操作,以及向量内存对齐和一致性模型。这些模型确保了向量操作的高效性和准确性。 然后,文档介绍了向量算术指令格式,包括向量整数、固定点和浮点算术指令。这些指令支持广泛的数学运算,为高性能计算提供了强大的支持。 此外,文档还涉及向量归约操作、掩码指令和置换指令,这些指令增强了向量操作的灵活性和功能性。 最后,文档讨论了异常处理机制,并列举了标准向量扩展指令列表。这些扩展指令为向量处理器提供了丰富的功能集,使其能够适应不同的应用场景和性能需求。

2024-03-02

RISC-V DSP 扩展指令集 P-ext-proposal.pdf

RISC-V  DSP扩展指令集文档总结的,《P-ext-proposal.pdf》文档的关键内容如下: 主要介绍了RISC-V的P扩展指令集及其相关细节。 首先,对P扩展指令进行了概述,并列出了其与其他扩展重复的指令。 接着,详细描述了P扩展的子集,包括Zbpbo扩展和Zpn扩展(适用于RV32和RV64)的指令。 此外,还提供了仅适用于RV64的详细指令描述。 文档还介绍了新的用户控制和状态寄存器,并提供了指令编码表。最后,列出了因RVB重叠而被移除的指令。 这份文档为RISC-V的P扩展指令集提供了全面而详细的信息,包括指令的描述、编码、以及与其他扩展的关系。这对于理解、开发和优化基于RISC-V架构的系统非常有价值。同时,文档也提醒了开发者在使用P扩展时需要注意的兼容性和优化问题。

2024-03-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除