【基础算法】(05)五大常用算法之一:分治算法

本文详细介绍了分治算法,包括其基本思想、适用情况和基本步骤。通过分解、解决和合并子问题来解决原问题。讨论了分治法在二分查找、大整数乘法等问题中的应用,并提供了具体的实现示例,如求x的n次幂和最大子序列问题。
摘要由CSDN通过智能技术生成

【基础算法】(05)五大常用算法之-分治算法

Auther: Thomas Shen
E-mail: Thomas.shen3904@qq.com
Date: 2017/10/21
All Copyrights reserved !


1. 简述:

本系列介绍了五大常用算法,其中本文是第一篇,介绍了 ‘分治算法’ 的细节内容。

在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。

2. 算法原理:
2.1 基本思想:

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

如果原问题可分割成k个子问题,1

2.2 分治法适用的情况:

分治法所能解决的问题一般具有以下几个特征:

  1. 该问题的规模缩小到一定的程度就可以容易地解决;
  2. 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
  3. 利用该问题分解出的子问题的解可以合并为该问题的解;
  4. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

2.3 分治法的基本步骤:

分治法在每一层递归上都有三个步骤:

  1. 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
  2. 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
  3. 合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:

    Divide-and-Conquer(P)
    1. if |P|≤n0
    2. then return(ADHOC(P))
    3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk
    4. for i←1 to k
    5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
    6. T ← MERGE(y1,y2,...,yk) △ 合并子问题
    7. return(T)

其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。

ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。

算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。

2.4 复杂性分析:

一个分治法将规模为n的问题分成k个规模为 n/m 的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:T(n)= k T(n/m)+f(n)

通过迭代法求得方程的解:

递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。

通常假定T(n)是单调上升的,从而当 mi≤n<mi+1 时,T(mi)≤T(n)<T(mi+1)


3. 例题及实现:

可使用分治法求解的一些经典问题

  1. 二分搜索;
  2. 大整数乘法;
  3. Strassen矩阵乘法;
  4. 棋盘覆盖;
  5. 归并排序;
  6. 快速排序;
  7. 线性时间选择;
  8. 最接近点对问题;
  9. 循环赛日程表;
  10. 汉诺塔。
3.1 求x的n次幂:

复杂度为 O(lgn) 的分治算法:

#include "stdio.h"
#include "stdlib.h"

int power(int x, int n)
{
    int result;
    if(n == 1)
        return x;
    if( n % 2 == 0)
        result = power(x, n/2) * power(x, n / 2);
    else
        result = power(x, (n+1) / 2) * power(x, (n-1) / 2);
    return result;
}

int main()
{
    int x = 5;
    
  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值