Redisson系列文章:
- 【Redisson】Redisson–基础入门
- 【Redisson】Redisson–布隆(Bloom Filter)过滤器
- 【Redisson】Redisson–分布式锁的使用(推荐使用)
- 【分布式锁】Redisson分布式锁底层原理
- 【Redisson】Redisson–限流器
一、限流器作用
基于Redis的分布式限流器RateLimiter可以用来在分布式环境下现在请求方的调用频率。既适用于不同Redisson实例下的多线程限流,也适用于相同Redisson实例下的多线程限流。
RateLimter主要作用就是可以限制调用接口的次数。主要原理就是调用接口之前,需要拥有指定个令牌。限流器每秒会产生X个令牌放入令牌桶,调用接口需要去令牌桶里面拿令牌。如果令牌被其它请求拿完了,那么自然而然,当前请求就调用不到指定的接口。
二、主要使用业务场景
- 单机或分布式情况下的缓存击穿
- 接口需要限制调用次数
三、代码
RRateLimiter rateLimiter = redisson.getRateLimiter("myRateLimiter");
// 初始化
// 最大流速 = 每10秒钟产生1个令牌
rateLimiter.trySetRate(RateType.OVERALL, 1, 10, RateIntervalUnit.SECONDS);
//需要1个令牌
if(rateLimiter.tryAcquire(1)){
//TODO:Do something
}
当前业务就是,向指定手机号发送短信。但是有每10秒只允许发送1次的限制。完全可以使用Redisson限流器来完成。
package com.tyzhou.redisson.service;
import com.tyzhou.Constant;
import org.apache.commons.lang3.StringUtils;
import org.redisson.api.RRateLimiter;
import org.redisson.api.RateIntervalUnit;
import org.redisson.api.RateType;
import org.redisson.api.RedissonClient;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class RateLimiterService {
private static final Logger LOGGER = LoggerFactory.getLogger(RateLimiterService.class);
@Autowired
private RedissonClient redisson;
public void sendMsg(String phone) {
if (StringUtils.isNotBlank(phone)) {
RRateLimiter rateLimiter =
redisson.getRateLimiter(Constant.REDISSON_RATE_LIMITER + phone);
//每10秒产生1个令牌
rateLimiter.trySetRate(RateType.OVERALL, 1, 10,
RateIntervalUnit.SECONDS);
if (rateLimiter.tryAcquire(1)) {
LOGGER.info("向手机:{}发送短信", phone);
}
}
}
}
调用者:
@PostMapping("/send_msg")
public void sendMsg(@RequestParam String phone) {
while(true){
rateLimiterService.sendMsg(phone);
}
}
用了一个死循环,但是从日志的打印效果上来看,每10秒才请求到一次我们的发送短信接口。
四、原理
4.1、getRateLimiter
// 声明一个限流器 名称 叫key
redissonClient.getRateLimiter(key)
4.2、trySetRate
trySetRate方法跟进去底层实现如下:
@Override
public RFuture<Boolean> trySetRateAsync(RateType type, long rate, long rateInterval, RateIntervalUnit unit) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"redis.call('hsetnx', KEYS[1], 'rate', ARGV[1]);"
+ "redis.call('hsetnx', KEYS[1], 'interval', ARGV[2]);"
+ "return redis.call('hsetnx', KEYS[1], 'type', ARGV[3]);",
Collections.<Object>singletonList(getName()), rate, unit.toMillis(rateInterval), type.ordinal());
}
举个例子,更容易理解:
比如下面这段代码,5秒中产生3个令牌,并且所有实例共享(RateType.OVERALL所有实例共享、RateType.CLIENT单实例端共享)
trySetRate(RateType.OVERALL, 3, 5, RateIntervalUnit.SECONDS);
那么redis中就会设置3个参数:
hsetnx,key,rate,3
hsetnx,key,interval,5
hsetnx,key,type,0
接着看tryAcquire(1)方法:底层源码如下
private <T> RFuture<T> tryAcquireAsync(RedisCommand<T> command, Long value) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
"local rate = redis.call('hget', KEYS[1], 'rate');" //1
+ "local interval = redis.call('hget', KEYS[1], 'interval');" //2
+ "local type = redis.call('hget', KEYS[1], 'type');" //3
+ "assert(rate ~= false and interval ~= false and type ~= false, 'RateLimiter is not initialized')" //4
+ "local valueName = KEYS[2];" //5
+ "if type == 1 then "
+ "valueName = KEYS[3];" //6
+ "end;"
+ "local currentValue = redis.call('get', valueName); " //7
+ "if currentValue ~= false then "
+ "if tonumber(currentValue) < tonumber(ARGV[1]) then " //8
+ "return redis.call('pttl', valueName); "
+ "else "
+ "redis.call('decrby', valueName, ARGV[1]); " //9
+ "return nil; "
+ "end; "
+ "else " //10
+ "redis.call('set', valueName, rate, 'px', interval); "
+ "redis.call('decrby', valueName, ARGV[1]); "
+ "return nil; "
+ "end;",
Arrays.<Object>asList(getName(), getValueName(), getClientValueName()),
value, commandExecutor.getConnectionManager().getId().toString());
}
- 第1、2、3备注行是获取上一步set的3个值:rate、interval、type,如果这3个值没有设置,直接返回rateLimiter没有被初始化。
- 第5备注行声明一个变量叫valueName 值为KEYS[2],KEYS[2]对应的值是getValueName()方法,getValueName()返回的就是上面第一步getRateLimiter我们设置的key;如果type=1,表示全局共享,那么valueName 的值改为取KEYS[3],KEYS[3]对应的值为getClientValueName(),查看getClientValueName()源码:
String getClientValueName() {
return suffixName(getValueName(), commandExecutor.getConnectionManager().getId().toString());
}
ConnectionManager().getId()如下:
public interface ConnectionManager {
UUID getId();
省略...
}
这个getId()是每个客户端初始化的时候生成的UUID,即每个客户端的getId是唯一的,这也就验证了trySetRate方法中RateType.ALL与RateType.PER_CLIENT的作用。
- 接着看第7标准行,获取valueName对应的值currentValue;首次获取肯定为空,那么看第10标准行else的逻辑
- set valueName 3 px 5,设置key=valueName value=3 过期时间为5秒
- decrby valueName 1,将上面valueName的值减1
- 那么如果第二次访问,第7标注行返回的值存在,将会走第8标注行,紧接着走如下判断
- 如果当前valueName的值也就是3,小于要获得的令牌数量(tryAcquire方法中的入参),那么说明当前时间内(key的有效期5秒内),令牌的数量已经被用完,返回pttl(key的剩余过期时间);反之说明桶中有足够的令牌,获取之后将会把桶中的令牌数量减1,至此结束。
总结
redission分布式限流采用令牌桶思想和固定时间窗口,trySetRate方法设置桶的大小,利用redis key过期机制达到时间窗口目的,控制固定时间窗口内允许通过的请求量。