RNN入门神经网络

参考博客 从NN到RNN再到LSTM
RNN一般指递归神经网络Recursive Neural NetWork,其中有一种使用很广泛的特殊结构Recurrent Neural Network时间递归神经网络,用于把当前隐含层的数据信息传递给下一次输入层并同时在下一层隐含层中传递的结构,能够记住之前的状态

import copy, numpy as np
np.random.seed(0)

# compute sigmoid nonlinearity
def sigmoid(x):
    output = 1/(1+np.exp(-x))
    return output

# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
    return output*(1-output)

# training dataset generation
int2binary = {}
binary_dim = 8

largest_number = pow(2,binary_dim)
binary = np.unpackbits(
    np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
    int2binary[i] = binary[i]

# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1

# initialize neural network weights
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1

synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

# training logic
for j in range(10000):

    # generate a simple addition problem (a + b = c)
    a_int = np.random.randint(largest_number/2) # int version
    a = int2binary[a_int] # binary encoding

    b_int = np.random.randint(largest_number/2) # int version
    b = int2binary[b_int] # binary encoding

    # true answer
    c_int = a_int + b_int
    c = int2binary[c_int]

    # where we'll store our best guess (binary encoded)
    d = np.zeros_like(c)

    overallError = 0

    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))

    # moving along the positions in the binary encoding
    for position in range(binary_dim):

        # generate input and output
        X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
        y = np.array([[c[binary_dim - position - 1]]]).T

        # hidden layer (input ~+ prev_hidden)
        layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))

        # output layer (new binary representation)
        layer_2 = sigmoid(np.dot(layer_1,synapse_1))

        # did we miss?... if so by how much?
        layer_2_error = y - layer_2
        layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
        overallError += np.abs(layer_2_error[0])

        # decode estimate so we can print it out
        d[binary_dim - position - 1] = np.round(layer_2[0][0])

        # store hidden layer so we can use it in the next timestep
        layer_1_values.append(copy.deepcopy(layer_1))

    future_layer_1_delta = np.zeros(hidden_dim)

    for position in range(binary_dim):

        X = np.array([[a[position],b[position]]])
        layer_1 = layer_1_values[-position-1]
        prev_layer_1 = layer_1_values[-position-2]

        # error at output layer
        layer_2_delta = layer_2_deltas[-position-1]
        # error at hidden layer
        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + 
            layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
        # let's update all our weights so we can try again
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)

        future_layer_1_delta = layer_1_delta

    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha    

    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0

    # print out progress
    if(j % 1000 == 0):
        print "Error:" + str(overallError)
        print "Pred:" + str(d)
        print "True:" + str(c)
        out = 0
        for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
        print str(a_int) + " + " + str(b_int) + " = " + str(out)
        print "------------"

用Python入门RNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值