numpy np.pad()

https://blog.csdn.net/hustqb/article/details/77726660 np.pad()常用与深度学习中的数据预处理,可以将numpy数组按指定的方法填充成指定的形状。 声明: 需要读者了解一点numpy数组的知识 np.pad() 对一维数组的填充 im...

2019-05-17 15:29:16

阅读数 9

评论数 0

深度学习优化-混合精度训练

https://blog.csdn.net/u011808673/article/details/82112115 MIXED PRECISION TRAININ...

2019-05-17 14:04:17

阅读数 7

评论数 0

pytorch resnet网络 详解

转载:https://blog.csdn.net/jiangpeng59/article/details/79609392 首先看张核心的resnet层次结构图(图1),它诠释了...

2019-05-16 11:20:59

阅读数 5

评论数 0

tensorflow model optimization 自动剪枝量化说明

请参见网址: https://github.com/tensorflow/model-optimization/blob/master/tensorflow_model_optimization/g3doc/guide/pruning/pruning_with_keras.ipynb 搬运...

2019-05-15 21:33:33

阅读数 5

评论数 0

Ubuntu15.04 64位安装cuda

https://blog.csdn.net/jiandanjinxin/article/details/51954179 备注:之前服务器上已经安装caffe,后安装Theano,所有有些步骤简略。 安装caffe详情见 Caffe + Ubuntu 15.04 + CUDA 7.5 在服务器...

2019-05-15 16:49:24

阅读数 5

评论数 0

获取Pytorch中间某一层权重或者特征

https://mp.csdn.net/mdeditor?not_checkout=1# 问题:训练好的网络模型想知道中间某一层的权重或者看看中间某一层的特征,如何处理呢? 1.获取某一层权重,并保存到excel中; 以resnet18为例说明: import torch import panda...

2019-05-14 15:49:41

阅读数 11

评论数 0

亲测可用 conda+pytorch

github: https://github.com/peterjc123/pytorch-scripts 首先要安装anaconda: 推荐清华镜像 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive...

2019-05-13 22:23:33

阅读数 49

评论数 0

查看最新tensorflow需要的配置

打开该文件,查看当前安装的tensorflow是否与cuda和cudnn匹配。

2019-04-20 13:58:11

阅读数 81

评论数 0

梯度爆炸与梯度裁剪

原理 问题:为什么梯度爆炸会造成训练时不稳定而且不收敛? 梯度爆炸,其实就是偏导数很大的意思。回想我们使用梯度下降方法更新参数: w1w2=w1−α∂J(w)∂w1=w2−α∂J(w)∂w2w1=w1−α∂J(w)∂w1w2=w2−α∂J(w)∂w2 损失函数的值沿着梯度的方向呈下降趋势,然而,...

2019-03-27 09:58:05

阅读数 169

评论数 0

2018-22Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And...

本次介绍的方法为“深度压缩”,文章来自2016ICLR最佳论文 《Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman Coding 转...

2019-03-27 09:45:45

阅读数 90

评论数 0

2018-17Dynamic Network Surgery for Efficient DNNs

NIPS 2016 http://arxiv.org/abs/1608.04493 code: https://github.com/yiwenguo/Dynamic-Network-Surgery 本文提出一种动态压缩CNN网络模型算法。针对 LeNet-5 和 AlexNet 可以分别减少...

2019-03-27 09:41:13

阅读数 121

评论数 0

理解 product quantization 算法

转自:http://vividfree.github.io/机器学习/2017/08/05/understanding-product-quantization 理解 product quantization 算法 05 August 2017 ...

2019-03-26 23:11:06

阅读数 131

评论数 0

K-means聚类算法的三种改进(K-means++,ISODATA,Kernel K-means)介绍与对比

K-means聚类算法的三种改进(K-means++,ISODATA,Kernel K-means)介绍与对比 转自:https://www.cnblogs.com/yixuan-xu/p/6272208.html   一、概述  &am...

2019-03-26 22:37:47

阅读数 150

评论数 0

轮盘赌选择法

转自http://www.cnblogs.com/heaad/archive/2010/12/23/1914725.html以及https://www.cnblogs.com/adelaide/articles/5679475.html轮盘赌选择法又称比例选择方法.其基本思想是:各个个体被选中的概...

2019-03-26 22:31:38

阅读数 174

评论数 0

矢量量化(Vector Quantization)

引自:http://blog.csdn.net/zouxy09/article/details/9153255 矢量量化(VQ,Vector Quantization)是一种极其重要的信号压缩方法。VQ在语音信号处理中占十分重要的地位。广泛应用于语音编码、语音识别和语音合成等领域。 &...

2019-03-26 22:07:47

阅读数 137

评论数 0

神经网络压缩综述

1.研究背景 对模型预测精度无明显影响 压缩模型的参数数量、深度来降低模型空间复杂度 全连接层参数多,模型大小由全连接层主导 不显著提高训练时间复杂度,降低预测时间复杂度(计算量) 卷积层计算量大,计算代价由卷积操作主导 2.方法 2.1.更精细模型的设计 Aggregated ...

2019-03-26 13:50:14

阅读数 166

评论数 0

SqueezeNet详细解读

提出了新的网络架构Fire Module,通过减少参数来进行模型压缩 使用其他方法对提出的SqeezeNet模型进行进一步压缩 对参数空间进行了探索,主要研究了压缩比和3∗33∗3卷积比例的影响 这篇文章是 SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X...

2019-03-26 10:31:56

阅读数 94

评论数 0

直方图均衡化

局部增强常用于一些要求特定增强效果的场合: (1)局部增强可借助将图像分成子图像(一般奇x奇)再对每个子图像具体增强。 直方图变换是空域增强中最常采用的方法,它也很容易用于图像的局部增强。只需先将图像分成一系列(一般互相不重叠)小区域(子图像),此时直方图均衡化或规定化都可以基于小区域内的像素...

2019-03-25 10:55:40

阅读数 41

评论数 0

Rethinking the value of network pruning

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiongchengluo1129/article/details/84311216 </div> &a...

2019-03-17 21:42:54

阅读数 42

评论数 0

MEC —— 优化内存与速度的卷积计算

1. 背景工作 目前的CNN模型中,全连接层往往在最后一层才会使用。 意思也就是说,网络的主体是由卷积层构成的。 因此,加快卷积层的计算对于整个网络的性能至关重要。 目前,卷积的计算大多采用间接计算的方式,主要有以下三种实现方式: im2col + GEMM。 caffe等很多框架中都使用了这种...

2019-03-17 16:42:58

阅读数 59

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭