Cursor的五种高级用法

代码编写

Cursor 最基本的功能是帮助你编写代码。只需使用 Composer(Ctrl+I),描述你想要实现的功能,Cursor 就能生成相应的代码。不满意?直接告诉它,它会立即调整

eg:生成一个简历网站,模型采用claud3.5
在这里插入图片描述

写作编辑

Cursor 不仅能写代码,还能帮你写文章。你可以让它生成大纲,然后根据大纲写出完整文稿。不满意某段内容?选中后按 Ctrl+K,让 AI 重新编辑,调整语气、长度或风格。

eg:模型采用claud3.5
在这里插入图片描述

进一步,新建一个写作大师的提示词
在这里插入图片描述
把大纲按照人设写成一篇文稿
在这里插入图片描述

自动生成工作流

Cursor 可以帮你设计和实现自动化工作流。只需导入相关文档,让 AI 理解平台的功能和节点,然后让它设计一个工作流并生成配置文件

eg:定制dify工作流

@dock 把dify的官方文档url添加进去
在这里插入图片描述

圈上文档直接问
在这里插入图片描述

使用dify设计工作流
在这里插入图片描述

进一步,可以找dify的配置文件给其做参考
在这里插入图片描述

在这里插入图片描述
打开dify,通过导入的方式打开工作流
在这里插入图片描述
直接点击运行即可
在这里插入图片描述

搞定开源项目

遇到不懂的开源项目?用 Cursor 打开它,让 AI 索引整个代码库并解释项目功能。想修改或添加功能?让 AI 为代码添加注释,或者直接告诉它你想要的改动

eg:clone一个开源项目,接着让AI解释开源项目
在这里插入图片描述

数据处理

Cursor 可以帮你处理各种数据格式。无论是数据清洗、格式转换,还是生成测试数据,都可以通过简单的自然语言指令完成,无需编写复杂的代码

eg:微调,把hugging face上的数据集修改成标准格式的数据集

微调大模型
在这里插入图片描述
在这里插入图片描述

hugging face上的数据集
在这里插入图片描述

在这里插入图片描述

如何最大化利用cursor工具的技巧来节省对话次数

1.首先切换为agent模式,只有这个模式它才会调用本地工具(如终端,读取文件等等)
在这里插入图片描述

2.命令cursor在项目根目录使用"tree /f"命令,并命令它总结每个文件的作用
如图:
在这里插入图片描述
3.命令cursor根据获取到的所有文件总结出项目结构(
在这里插入图片描述
在这里插入图片描述
4.命令cursor为每个层级创建白盒测试(根据需求来创建,这个时候此前收集到的信息会被模型归纳总结避免遗漏某个文件的测试)

5.直接让cursor运行测试,接着就看cursor反复测试代码直到调用工具次数到达上限(25次)或者代码通过测试吧

6.适当的时候可以让它添加DEBUG语句(毕竟模型还不能通过断点来DEBUG)来避免反复修改却始终没有解决问题的情况.
在这里插入图片描述

节省对话次数的方法就是在一次对话中让它进入"运行测试"-“得到测试结果”-“进行DEBUG”-"运行测试"的循环

如果我想让AI总结项目,生成开发指南,但不想让他修改代码该怎么办?

首先,我们要明确一点,LLM上下文和输出都是受限的,所以寻常的Chat模式必定是无法使用的,因为你不可能将所有代码一次性全部提供给它,它也不可能给你生成几万行的开发指南。

所以,我们需要使用具有agent功能的工具,如:cursor compose里面的agent模式,或者cline工具,这些工具本质上是由一个决策者和多个执行者组成,决策者负责制定完成任务所需要进行的操作步骤,再交由执行者去执行,决策和执行都是单独的一次Chat。

那么,思路就很简单了。

  • 1、拿到项目文件目录接口,由决策者生成阅读指南,相当于你的leader教你如何阅读项目。
  • 2、让执行者根据决策者生成的阅读指南,逐个文件阅读并生成文件内容概要、函数接口概要,将阅读结果保留到/docs目录下的项目同结构md文件下(如:src/hello/prompt.py(提供一些prompt常量) => docs/src/hello/prompt.md,src/hello/fillPrompt.py(提供一些工具函数,来操作prompt里面定义的变量等信息) => docs/src/hello/fillPrompt.md)。
  • 3、所有的执行者阅读完后,再交由思考者,逐个文件夹总结归纳(例如:docs/src/hello/下有prompt.md和fillPropmt.md,对齐总结归纳后会得到docs/src/hello.md),如此循环递归向上,直到得到最终的docs.md,这便是我们所需要的项目开发指南。

实现:如果你使用cline,那么请你创建一个MCP工具,用于获取项目目录和文件结构,并需要能标注和获取已经浏览和归纳总结过的文件。

Cursor突然不能用了

go-cursor-help

参考

<think>好的,我现在需要回答用户关于如何使用Cursor创建Dify工作流的问题。首先,我得理解用户的问题。用户提到了Dify,一个低代码开发平台,可能用于构建应用或自动化流程。他们想通过Cursor(可能是一个代码编辑器或集成开发环境)来创建Dify的工作流,并需要方法和示例。 首先,我需要确认Dify和Cursor的具体功能和集成方式。根据用户提供的参考引用,Dify Agent通过知识库生成SQL查询数据库,步骤包括创建表结构、导入知识库、配置Dify查询SQL工作流、输入prompt模板以及Agent配置与对话展示。这可能意味着Dify工作流涉及到数据库操作、知识库集成以及自动化流程配置。 接下来,用户提到的Cursor可能是指Cursor.so,一个基于AI的代码编辑器,支持智能代码补全和生成。因此,用户可能希望利用CursorAI功能来辅助编写Dify工作流配置或相关代码。 我需要考虑如何将两者结合起来。可能的步骤包括: 1. **安装和设置Cursor**:用户需要安装Cursor并配置相关插件或扩展以支持Dify工作流的开发。 2. **了解Dify工作流结构**:Dify的工作流可能使用YAML、JSON或其他配置文件格式,或者需要编写特定的代码(如Python)来定义流程。 3. **利用CursorAI功能生成代码或配置**:用户可以通过自然语言描述工作流需求,Cursor生成相应的配置代码或脚本。 4. **集成知识库和数据库**:根据参考引用,需要创建表结构并导入数据,可能需要编写SQL脚本,Cursor可以帮助生成这些脚本。 5. **测试和调试工作流**:使用Cursor的调试功能验证工作流的正确性。 可能的示例包括使用Cursor生成创建数据库表的SQL语句,或者编写调用Dify API的Python代码。需要注意Dify的具体API或配置方式,可能需要查阅官方文档以确保准确性。 此外,用户提供的引用提到配置prompt模板和Agent,这可能涉及自然语言处理或AI模型集成,CursorAI功能可以辅助生成这些模板或配置参数。 总结步骤可能如下: 1. 在Cursor中创建新项目,配置Dify环境。 2. 使用CursorAI生成SQL脚本创建数据库表。 3. 编写或生成Dify工作流配置文件,定义各个步骤(数据导入、查询处理等)。 4. 配置Agent设置和prompt模板,利用Cursor自动生成模板内容。 5. 测试工作流,调试可能出现的问题。 需要验证这些步骤是否符合Dify的实际操作流程,可能需要参考Dify的官方文档或教程,确保建议的方法正确可行。同时,示例代码或配置需要符合Dify的语法和结构,避免错误。</think>以下是使用Cursor创建Dify工作流的步骤详解及示例: ### 一、环境准备 1. 安装Cursor(需开启AI模式) 2. 注册Dify账号并创建应用 3. 准备SQL数据库(如MySQL/PostgreSQL) ### 二、核心配置流程 1. **数据库配置** 使用Cursor生成建表语句: ```sql CREATE TABLE knowledge_base ( id INT PRIMARY KEY AUTO_INCREMENT, content TEXT, metadata JSON ); ``` 通过`⌘/Ctrl + K`调用AI优化表结构[^1] 2. **工作流定义** 创建`dify_workflow.yaml`: ```yaml #Cursor生成提示:创建SQL查询工作流 steps: - name: data_loader type: sql_connector config: query: "SELECT * FROM knowledge_base WHERE metadata->>'category' = :category" - name: prompt_engine type: llm_processor params: template: | 根据以下内容生成报告: {{ data_loader.output }} ``` 3. **API集成**(Cursor自动补全) ```python # 通过⌘/Ctrl + L生成API调用代码 import dify_client workflow = dify_client.configure( sql_conn="mysql://user:pass@localhost/db", prompt_template=open('prompt.txt').read() ) ``` ### 三、调试技巧 1. 使用CursorAI调试功能: ```bash # 输入错误日志获取修复建议 ERROR: SQL connection timeout ``` 2. 可视化测试: ```python workflow.test_input({"category": "finance"}) ``` ### 四、最佳实践 1. 通过`⌘/Ctrl + T`生成单元测试模板 2. 使用AI生成prompt优化建议 3. 自动生成API文档注释
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喜欢打篮球的普通人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值