Tensorflow-API :tf.cond

tf.cond()是一个条件函数,根据条件返回的True或False 返回相应的结果
第一个参数是条件 bool 类型,第2个和第3个参数是返回的值,如果条件是True 返回第二个参数,如果条件是False 则返回第三个参数

import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)
x = tf.constant(4)
y = tf.constant(5)
z = tf.multiply(a, b)
result = tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))
with tf.Session() as session:
    print(result.eval())
这是一个线性回归模型的结果表格。该模型的因变量为 count,自变量为 temp。下面是对表格中的各项进行解释: - Dep. Variable: count:指定了模型的因变量为 count。 - R-squared: 0.156:决定系数 R-squared 为 0.156,表示自变量 temp 可解释因变量 count 的 15.6% 的方差。 - Model: OLS:模型采用最小二乘法(OLS)进行估计。 - Adj. R-squared: 0.156:校正后的决定系数为 0.156,表示模型已经考虑了自变量的个数和样本量对 R-squared 的影响。 - Method: Least Squares:估计方法为最小二乘法。 - F-statistic: 2006.00:F 统计量为 2006.00,用于检验自变量 temp 是否显著影响因变量 count,P 值为 0.00,表明自变量显著影响因变量。 - Prob (F-statistic): 0.00:P 值为 0.00,表明自变量显著影响因变量。 - Time: 13:53:24:模型估计的时间为 13:53:24。 - Log-Likelihood: -71125:对数似然值为 -71125,用于衡量模型的拟合程度。 - No. Observations: 10886:样本量为 10886。 - AIC: 1.423e+05:信息准则 AIC 为 1.423e+05,用于比较模型的优劣性。 - Df Residuals: 10884:剩余自由度为 10884。 - BIC: 1.423e+05:贝叶斯信息准则 BIC 为 1.423e+05,用于比较模型的优劣性。 - Df Model: 1:模型自由度为 1。 - Covariance Type: nonrobust:协方差类型为非鲁棒型,即不考虑异常值对模型的影响。 - coef:系数估计值。 - std err:系数估计值的标准误差。 - t:t 统计量的值。 - P>|t|:t 统计量的 P 值,用于检验系数是否显著。 - [0.025 0.975]:系数估计值的置信区间。 模型的 RMSE(均方根误差)为 161.63,表示模型的平均预测误差为 161.63。同时,l 的值也为 161.63,可能是你在表格中标注的一个符号。但是,我并不清楚它的含义和作用。希望我的解释能对你有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值