CVPR 2022 | RepLKNet:采用31×31大kernel的CNN网络,性能超越Swin Transformer
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs paper:https://arxiv.org/pdf/2203.06717.pdfcode:https://github.com/megvii-research/RepLKNet该篇论文论述了卷积核的kernelsize可以选择多大。25x25就很好,31x31甚至更好。清华大学丁霄汉继RepVGG后提出了一种大量采用超大卷积核的模型...









