06-图1 列出连通集 (25分)
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 ... vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
思路:
连通集就是一个图它是连通的,然后里面结点的集合
DFS,BFS遍历结果就是一个连通集,因此只要对每个结点做搜索就行了
#include<iostream>
#include<vector>
#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef struct Node* Vertex;
struct Node
{
int data;
vector<int> edge;
};
Vertex *vertexs;
bool visited[10];
vector<int> temp;
void printArray(vector<int> a)
{
printf("{ ");
for(unsigned i=0; i<a.size(); i++)
printf("%d ",a[i]);
printf("}\n");
}
void initvisited(bool a[])
{
for(int i=0; i<10; i++)
a[i] = false;
}
void Visit(int x)
{
temp.push_back(x);
}
void DFS(Vertex V)
{
Visit(V->data);
visited[V->data] = true;
for(unsigned i=0; i<V->edge.size(); i++)
if(!visited[vertexs[V->edge[i]]->data])
DFS(vertexs[V->edge[i]]);
}
void BFS(Vertex V)
{
queue<Vertex> Q;
Q.push(V);
visited[V->data] = true;
while(!Q.empty())
{
Vertex x = Q.front();
Q.pop();
Visit(x->data);
for(unsigned i=0; i<x->edge.size(); i++)
{
if(!visited[x->edge[i]])
{
visited[x->edge[i]] = true;
Q.push(vertexs[x->edge[i]]);
}
}
}
}
void ListComponents(int n)
{
for(int i=0; i<n; i++)
{
if(!visited[vertexs[i]->data])
{
DFS(vertexs[i]);
printArray(temp);
temp.clear();
}
}
initvisited(visited);
for(int i=0; i<n; i++)
{
if(!visited[vertexs[i]->data])
{
BFS(vertexs[i]);
printArray(temp);
temp.clear();
}
}
}
int main()
{
int n,e;
cin>>n>>e;
vertexs = new Vertex[n];
for(int i=0; i<n; i++)
{
vertexs[i] = new Node;
vertexs[i]->data = i;
}
for(int i=0; i<e; i++){
int x,y;
cin>>x>>y;
vertexs[x]->edge.push_back(y);sort(vertexs[x]->edge.begin(),vertexs[x]->edge.end());
vertexs[y]->edge.push_back(x);sort(vertexs[y]->edge.begin(),vertexs[y]->edge.end());
}
initvisited(visited);
ListComponents(n);
return 0;
}