06-图1 列出连通集

06-图1 列出连通集   (25分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v1 v2 ... vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }


思路:

连通集就是一个图它是连通的,然后里面结点的集合

DFS,BFS遍历结果就是一个连通集,因此只要对每个结点做搜索就行了



#include<iostream>
#include<vector>
#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef struct Node* Vertex;
struct Node
{
    int data;
    vector<int> edge;
};
Vertex *vertexs;
bool visited[10];
vector<int> temp;
void printArray(vector<int> a)
{
    printf("{ ");
    for(unsigned i=0; i<a.size(); i++)
        printf("%d ",a[i]);
    printf("}\n");
}
void initvisited(bool a[])
{
    for(int i=0; i<10; i++)
        a[i] = false;
}
void Visit(int x)
{
    temp.push_back(x);
}
void DFS(Vertex V)
{
    Visit(V->data);
    visited[V->data] = true;
    for(unsigned i=0; i<V->edge.size(); i++)
        if(!visited[vertexs[V->edge[i]]->data])
            DFS(vertexs[V->edge[i]]);
}
void BFS(Vertex V)
{
    queue<Vertex> Q;
    Q.push(V);
    visited[V->data] = true;
    while(!Q.empty())
    {
        Vertex x = Q.front();
        Q.pop();
        Visit(x->data);
        for(unsigned i=0; i<x->edge.size(); i++)
        {
            if(!visited[x->edge[i]])
            {
                visited[x->edge[i]] = true;
                Q.push(vertexs[x->edge[i]]);
            }
        }
    }
}
void ListComponents(int n)
{
    for(int i=0; i<n; i++)
    {
        if(!visited[vertexs[i]->data])
        {
            DFS(vertexs[i]);
            printArray(temp);
            temp.clear();
        }
    }
    initvisited(visited);
    for(int i=0; i<n; i++)
    {
        if(!visited[vertexs[i]->data])
        {
            BFS(vertexs[i]);
            printArray(temp);
            temp.clear();
        }
    }
}
int main()
{
    int n,e;
    cin>>n>>e;
    vertexs = new Vertex[n];
    for(int i=0; i<n; i++)
    {
        vertexs[i] = new Node;
        vertexs[i]->data = i;
    }
    for(int i=0; i<e; i++){
        int x,y;
        cin>>x>>y;
        vertexs[x]->edge.push_back(y);sort(vertexs[x]->edge.begin(),vertexs[x]->edge.end());
        vertexs[y]->edge.push_back(x);sort(vertexs[y]->edge.begin(),vertexs[y]->edge.end());
    }
    initvisited(visited);
    ListComponents(n);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值