cuda 矩阵乘法函数之cublasSgemm

本文详细介绍了如何使用CUDA的cuBLAS库进行矩阵乘法,特别是如何通过调整cublasSgemm参数以实现按行存储和按列存储的结果。通过矩阵加法函数cublasSgeam实现矩阵转置,并讨论了不同情况下矩阵A和B的存储方式以及对应的参数设置,包括CPU与GPU数据交互的情况。经过验证,所提出的方案能够正确计算并存储结果矩阵。
摘要由CSDN通过智能技术生成

,可以考虑使用, 例如cublasSgeam()(矩阵加法), 进行一次1.0 * AT + 0.0 * B的参数设定, 利用内置的转置功能(注意这里的1和0), 来进行将A转换成AT. 在使用CUDA的cuBLAS库中矩阵乘法函数cublasSgemm时,注意到cuda其中的二维矩阵的储存是“按列储存”,一天都处于蒙蔽状态,查了很多资料,按所得结果情况,总结出如下几条。


一、获得按行存储的结果

由博文:http://blog.csdn.net/xfortius/article/details/9225799收到启发:

比如,我们想求C=A*B这个矩阵运算,其中A={ {1,1},{2,2},{3,3}};B={ {1},{1}};C={ {4},{5},{6}},而对于A、B、C进行一维数组表示有A={1,1,2,2,3,3},B={1,1},C={4,5,6};这个在c/c++是和前面表示一样,但是在cublasSgemm中就完全不对了,那么这个一维的A其实表示的是{ {1,2,3},{1,2,3}};可以看到两个矩阵其实刚好是转置关系。那么我们要求C=A*B,按照一维数据输入的话结果A表示的是AT,B表示的是BT,所以我们要输入的是AT和BT,这样在公式中得到的才是A*B.假设这是得到矩阵C=A*B,但是C也是按列存储的,我们要的是CT,而CT=BT*AT,而这里的BT其实就是原矩阵B,AT其实就是原矩阵A。可见,我们通过交换AB的顺序就可以得到按行存储的C。

这里还有一点,就是cublasSgemm的参数,把自己绕的有点晕。这里我们输入的是B*A即(2*1)*(3*2),但是真正在函数中执行的是BT*AT=CT(1*2)*(2*3=(1*3)).因此主要不要把参数搞错了。。

#include <cublas_v2.h> //cuda自带库函数  
#include <helper_cuda.h>  
#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值