后缀表达式,又称逆波兰式,指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行,所以不需要算符优先级,这对我们编写计算器来说很好实现
比如给定一个中缀表达式:
1 + 3 * 5 – ( 7 / 9 )
其后缀表达式应为:
1 3 5 * + 7 9 / -
首先要理解如何进行转换,先按照运算优先级对其加上括号
1 + 3 * 5 – ( 7 / 9 ) = ( (1 + (3 * 5 ) ) – ( 7 / 9 ) )
然后依次把优先级高的括号转为后缀
((1+(3*5)) – (7/9))
--> ((1 + (35*)) – (79/))
--> ((1 (35*)+) – 79/)
--> (135*+)(79/)-
--> 135*+79/-
整体步骤
- 中缀表达式转后缀表达式
- 计算后缀表达式
第一步:
中缀表达式转后缀表达式
自左向右读入中缀表达式
-
数字时,加入后缀表达式;
-
运算符:
-若为 ‘(’,入栈
-若为 ‘)’,则依次把栈中的的运算符加入后缀表达式中,直到出现’(’,从栈中删除’(’
-若为除括号外的其他运算符, 当其优先级高于除’('以外的栈顶运算符时,直接入栈。否则从栈顶开始,依次弹出比当前处理的运算符优先级高和优先级相等的运算符,直到一个比它优先级低的或者遇到了一个左括号为止,然后将其自身压入栈中(先出后入)。 -
当扫描的中缀表达式结束时,栈中的的所有运算符出栈;
具体图示:
第二步
计算后缀表达式
建立一个栈S 。从左到右读表达式,如果读到操作数就将它压入栈S中,如果读到n元运算符(即需要参数个数为n的运算符)则取出由栈顶向下的n项按操作数运算,再将运算的结果代替原栈顶的n项,压入栈S中 。如果后缀表达式未读完,则重复上面过程,最后输出栈顶的数值则为结束。
简言之:
- 从左到右读表达式
- 遇到操作数压入栈中
- 遇到操作符取并弹出栈顶n个元素,(n取决于操作符是n元操作符),计算结果压入栈中
- 后缀表达式读完,当前栈顶元素及为结果
代码如下
#include <iostream&