Description
穿过幽谷意味着离大魔王lemon已经无限接近了!
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
Input
输入数据首先是一个整数C,表示测试数据的组数。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
Output
请对应每组测试数据输出一个整数,表示yifenfei可以得到的最大幸运值。
Sample Input
1 3 8 9 10 10 10 10 -10 10 10 10 -11 -1 0 2 11 10 -20 -11 -11 10 11 2 10 -10 -10
Sample Output
52
这题搞了挺久,主要是想从头到尾求,然后第二种是从尾到头求,所以两种方法都来求了,初始化dp数组的时候出错了,一直找错误,刚开始用的memset初始化不行,改在循环里初始化就行了,这下感觉对memset有点陌生了……
下面用的是d[i][j]表示的是从d[1][1]到d[i][j]的最大值
#include <iostream>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <string>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
#include <set>
using namespace std;
int a[25][1005],dp[25][1005];
int main()
{
int c;
cin>>c;
while(c--)
{
int i,j,k,n,m;
cin>>n>>m;
for(i=1; i<=n; i++)
for(j=1; j<=m; j++)
{
cin>>a[i][j];
dp[i][j]=-100000000;
}
dp[1][1]=a[1][1];
for(i=1; i<=n; i++)
for(j=1; j<=m; j++)
{
if(i>1) dp[i][j]=max(dp[i][j],dp[i-1][j]+a[i][j]);
if(j>1) dp[i][j]=max(dp[i][j],dp[i][j-1]+a[i][j]);
for(k=2;j/k>=1&&j%k==0;k++)
dp[i][j]=max(dp[i][j],dp[i][j/k]+a[i][j]);
}
cout<<dp[n][m]<<endl;
}
return 0;
}
下面用的是d[i][j]表示的是从d[i][j]到d[n][m]的最大值
#include <iostream>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <string>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
#include <set>
using namespace std;
int a[25][1005],dp[25][1005];
int main()
{
int c;
cin>>c;
while(c--)
{
int i,j,k,n,m;
cin>>n>>m;
for(i=1; i<=n; i++)
for(j=1; j<=m; j++)
{
cin>>a[i][j];
dp[i][j]=-100000000;
}
dp[n][m]=a[n][m];
for(i=n; i>=1; i--)
for(j=m; j>=1; j--)
{
if(i<n) dp[i][j]=max(dp[i][j],dp[i+1][j]+a[i][j]);
if(j<m) dp[i][j]=max(dp[i][j],dp[i][j+1]+a[i][j]);
for(k=2;j*k<=m;k++)
dp[i][j]=max(dp[i][j],dp[i][j*k]+a[i][j]);
}
cout<<dp[1][1]<<endl;
}
return 0;
}