数论-同余模定理和欧几里德算法

 

扩展的欧几里德算法不仅可以用来求解gcd(a, b),还可以用来求解一对整数(x, y),使得 xa + yb = gcd(a, b)。显然,当gcd(a, b) = 1时,有xa + yb = 1,则在模b情况下x是a的乘法逆元,在模a情况下y是b的乘法逆元。

推导过程:

1、当b = 0时,gcd(a, b) = a, 则 x = 1,y = 0满足条件。

2、当a、b <> 0 时, 设

xa + yb         = gcd(a, b),递归一步,得:

x'b + y'(a%b) = gcd(b, a%b)

由gcd(a, b) = gcd(b, a%b) 得

xa + yb = x'b + y'(a%b)

xa + yb = x'b + y'(a - a/b * b)

xa + yb = x'b + y'a - y'*a/b*b

xa + yb = y'a + (x' - y'a/b)b

如果令

x = y'

y = x' - y'a / b

则可以递归求出最终的x,y。

用C语言编码如下:

#include <cstdlib>

int exgcd(int a, int b, int& x, int& y)

{

    if(b == 0){

        x = 1;

        y = 0;

        return a;

    }

    div_t dres = div(a, b);

    int r = exgcd(b, dres.rem, x, y);

    int t = x;

    x = y;

    y = t - dres.quot * y;

    return r;

}

算法最终返回a、b的最大公约数,并赋值x,y,使得xa + yb = gcd(a, b)成立。

那么什么是线性同余方程?对于方程:ax≡b(mod   m),a,b,m都是整数,求解x 的值。

解题例程:pku1061 青蛙的约会 解题报告

符号说明:

                  mod表示:取模运算

                  ax≡b(mod   m)表示:(ax - b) mod m = 0,即同余

                  gcd(a,b)表示:a和b的最大公约数

求解ax≡b(mod n)的原理:

对于方程ax≡b(mod n),存在ax + by = gcd(a,b),x,y是整数。而ax≡b(mod n)的解可以由x,y来堆砌。具体做法,见下面的MLES算法。

第一个问题:求解gcd(a,b)

定理一:gcd(a,b) = gcd(b,a mod b)

实现:古老的欧几里德算法

int Euclid(int a,int b)
{
if(b == 0)
      return a;
else
      return Euclid(b,mod(a,b));
}

附:取模运算

int mod(int a,int b)
{
if(a >= 0)
      return a % b;
else
      return a % b + b;
}

第二个问题:求解ax + by = gcd(a,b)

定理二:gcd(b,a mod b) = b * x' + (a mod b) * y'

                                           = b * x' + (a - a / b * b) * y'

                                           = a * y' + b * (x' - a / b *      y')

                                           = a * x + b * y

                  则:x = y'

                         y = x' - a / b * y'

实现:

triple Extended_Euclid(int a,int b)
{
triple result;
if(b == 0)
{
      result.d = a;
      result.x = 1;
      result.y = 0;
}
else
{
      triple ee = Extended_Euclid(b,mod(a,b));
      result.d = ee.d;
      result.x = ee.y;
      result.y = ee.x - (a/b)*ee.y;
}
return result;
}

附:三元组triple的定义

struct triple
{
int d,x,y;
};

第三个问题:求解ax≡b(mod n)

实现:由x,y堆砌方程的解

int MLES(int a,int b,int n)
{
triple ee = Extended_Euclid(a,n);
if(mod(b,ee.d) == 0)
      return mod((ee.x * (b / ee.d)),n / ee.d);
else
      return -1;
}//返回-1为无解,否则返回的是方程的最小解

说明:ax≡b(mod n)解的个数:

           如果ee.d 整除 b 则有ee.d个解;

           如果ee.d 不能整除 b 则无解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值