车辆检测 car detect 深度学习算法 自建数据集训练模型

项目需求是通过深度学习算法检测城市道路上的违法停车,采用YOLOv5训练模型,识别率高达99.5%。主要步骤包括爬虫获取汽车数据集,手动标注,然后训练模型,并在测试中输出车辆位置和置信度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近项目中有一个需求,需要检测城市道路上违法停车,长时间占用非停车道,进行抓拍预警,识别率可达99.5%以上。

 

学习目标:

​ 1.爬虫汽车数据集,手动标注车辆。

​ 2.训练:使用YOLOV5训练出检测车辆模型。

 3.测试:输出检测出车辆位置,和置信度概率。

结果如下:

识别率可达99%以上

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值