机器学习
文章平均质量分 88
zhangweiwei1516
这个作者很懒,什么都没留下…
展开
-
浅谈SVM(四)
三、非线性 SVM 1、引子 \quad为了将线性 SVM 拓展到非线性 SVM,我们对线性 SVM 进行简单地分析,首先就是关于我们的超平面,对于一个数据点 xx 进行分类,其实就是通过把 xx 带入到 f(x)=wTx+bf(x)=w^Tx+b 中算出结果,然后根据其正负号来进行类别划分的。而在前面的推导中我们得到 w=∑ni=1αiyixiw=\sum_{i=1}^n \alpha_iy原创 2017-05-02 10:52:33 · 437 阅读 · 0 评论 -
浅谈SVM(五)
四、使用松弛变量处理 outliers 方法 \quad之前我们假定,数据是线性可分的,亦即可以找到一个可行的超平面将数据完全分开。后来为了处理非线性数据,使用 Kernel 函数的方法对原来的线性 SVM 进行了推广,使得非线性的情况也能处理。虽然通过映射 Φ(.)\Phi(.) 将原始数据映射到高维空间之后,能够线性分隔的概率大大增加,但是对于某些情况还是很难处理。 \quad例如可能并不是原创 2017-05-03 08:24:15 · 507 阅读 · 0 评论 -
浅谈SVM(六)
五、SMO 算法 1、简要介绍 \quad时序最小优化(SMO: Sequential Minimal Optimization)是一种可以快速解决 SVM 中二次规划(QP)问题的简单算法。它的好处有两点:一是不需要额外的矩阵存储,二是不需要对二次规划问题进行数值求解。 \quad与之前的一些算法不同,SMO 算法每一步都是解决一个最小规模的优化问题,对于标准的 SVM QP 问题,最小规原创 2017-05-03 10:35:54 · 506 阅读 · 0 评论 -
浅谈SVM(一)
一、SVM简介:专业介绍:(1)支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其它机器学习问题中。(2)支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度原创 2017-04-25 08:52:25 · 691 阅读 · 0 评论 -
浅谈SVM(二)
二、线性SVM1、 重新审视 LogisticLogistic 回归 \quadLogisticLogistic 回归目的是从特征中学习出一个 0/10/1 分类模型,而这个模型是将特征的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用 LogisticLogistic 函数(或称作 sigmoidsigmoid 函数)将自变量映射到 (0,1)(0,1) 上,映射后的值被认为原创 2017-04-25 10:42:43 · 246 阅读 · 0 评论 -
浅谈SVM(三)
4、从原始问题到对偶问题 \quad上面说我们的问题可以用现成的优化包来进行求解,为什么我们还要把原始问题转化为对偶问题呢?原因主要有两点:一者对偶问题往往更容易求解;二者可以自然地引入核函数,进而推广到非线性分类问题。 \quad首先来介绍一下 LagrangeLagrange 对偶性,通过给每个约束条件加上一个 LagrangeLagrange 乘子来定义 LagrangeLagrange原创 2017-04-26 09:40:43 · 414 阅读 · 0 评论 -
附录1 对偶问题的补充说明
\quad在SVM算法中,我们提到了对偶问题,对偶问题的这套理论不仅适用于SVM的优化问题,而且对于所有带约束的优化问题都是适用的,是优化理论中的一个重要部分,一般来说,对于任意一个带约束的优化问题都可以写成这样的形式: minf0(x)s.t.fi(x)≤0,i=1,2,...,mhi(x)=0,i=1,2,...,p\begin{array}{}min f_0(x) \\s.t. \\原创 2017-04-26 11:40:25 · 373 阅读 · 0 评论