/*
树的分治
因为树的点权值可达到10^15,注意手动扩栈,还有int64
题意:给你一棵树,给你一些素数,给你每个点一个权值且每个权值均可由这些素数组成。现在定义任意任意两点的价值为他们路径上的权值相乘。求这样的点对的权值为立方数的个数
解:
如果直接求得话会超int64,不可行
由立方数的性质可得,一个数可有素数组成,对于这些素数可以分解为这些素数相乘的形式如,24=(2^3)*(3^1);如果是立方数的话那么他的各进制对3取余都为0.股24可写成01这种三进制形式
对于这些权值的乘法可有三进制想加可得。
接下来就是树的分治了
当然这里可以先求出一条子树上的各个点的权值乘积,然后和根节点和其他字树比较看是否可以互补那么就找到一对
可用map容器实现。因为他重点是比较到根节点和其他子树是否可以互补,进而递归下去,求出每个子树的这样的点对。
*/
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<map>
#define ll __int64
#define N 51000
#define inf 0x3fffffff
using namespace std;
struct node {
ll u,v,next;
}bian[N*4];
ll yong,head[N];
ll num[N],nn,all[N][51],ff[N][51],minn,m,vis[N],fp[N],ma;
ll prime[51],len;
map<ll,ll>q;
void init() {
yong=0;
memset(head,-1,sizeof(head));
}
void addedge(ll u,ll v) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].next=head[u];
head[u]=yong++;
}
void dfs1(ll u,ll fa) {//找到每次根子树的的节点数目
ll i;
nn++;
for(i=head[u];i!=-1;i=bian[i].next) {
ll v=bian[i].v;
if(v!=fa&&!vis[v])
dfs1(v,u);
}
return ;
}
ll Max(ll v,ll vv) {
return v>vv?v:vv;
}
void dfs2(ll u,ll fa) {//找重心
num[u]=1;
ll i,tit=0;
for(i=head[u];i!=-1;i=bian[i].next) {
ll v=bian[i].v;
if(v!=fa&&!vis[v]) {
dfs2(v,u);
num[u]+=num[v];
tit=Max(tit,num[v]);
}
}
tit=Max(tit,nn-num[u]);
if(tit<minn) {
minn=tit;
ma=u;
}
return ;
}
void dfs4(ll u,ll fa) {
ll i;
//prllf("dfs4=%d",u);
if(fa!=-1) {
ll e=fp[fa];
for(i=1;i<=m;i++)
all[len][i]=(all[e][i]+ff[u][i])%3;
}
else {
for(i=1;i<=m;i++)
all[len][i]=ff[u][i];
}
fp[u]=len++;
for(i=head[u];i!=-1;i=bian[i].next) {
ll v=bian[i].v;
if(v!=fa&&!vis[v])
dfs4(v,u);
}
return ;
}
ll dfs3(ll u) {//求以当前子树为根的符合条件的对数
ll i,ans=0,j,k;
ll s1,s2;
s1=0;
q.clear();
for(i=1;i<=m;i++)
s1=s1*3+ff[u][i];
if(s1==0)ans++;
//prllf("ma=%d,s1=%d\n",ma,s1);
q[s1]=1;
for(i=head[u];i!=-1;i=bian[i].next) {
ll v=bian[i].v;
if(vis[v])continue;
len=0;
dfs4(v,-1);
// prllf("len=%d\n",len);
for(j=0;j<len;j++) {//进行互补
s1=0;
for(k=1;k<=m;k++)
s1=s1*3+(3-all[j][k])%3;
// prllf("zzs1=%d\n",s1);
ans+=q[s1];
}
for(j=0;j<len;j++) {
s2=0;
for(k=1;k<=m;k++)
s2=s2*3+(all[j][k]+ff[u][k])%3;//到根结点的权值,为下次互补做准备,同时避免重复
q[s2]++;
}
// prllf("aad%d\n",ans);
}
return ans;
}
ll dfs(ll u) {
minn=inf;
nn=0;
dfs1(u,-1);
dfs2(u,-1);//求重心
vis[ma]=1;
ll ans=dfs3(ma);
// prllf("ma=%d\n",ma);
//prllf("ans=%d\n",ans);
ll i;
for(i=head[ma];i!=-1;i=bian[i].next) {
ll v=bian[i].v;
if(!vis[v])
ans+=dfs(v);
}
return ans;
}
int main() {
ll n,i,j,k,kk;
while(scanf("%I64d",&n)!=EOF) {
init();
scanf("%I64d",&m);
for(i=1;i<=m;i++)
scanf("%I64d",&prime[i]);
for(i=1;i<=n;i++) {
scanf("%I64d",&k);
for(j=1;j<=m;j++) {
kk=0;
while(k%prime[j]==0) {
k/=prime[j];
kk++;
kk%=3;
}
ff[i][j]=kk;
}
}
for(i=1;i<n;i++) {
scanf("%I64d%I64d",&j,&k);
addedge(j,k);
addedge(k,j);
}
memset(vis,0,sizeof(vis));
printf("%I64d\n",dfs(1));
}
return 0;}
hdu 4670 树的分治-求点对的个数
最新推荐文章于 2021-08-03 12:48:56 发布