hdu 2686 费用流 / 双线程DP

题意:给一个方阵,求从左上角出到右下角(并返回到起点),经过每个点一次不重复,求最大获益(走到某处获得改点数值),下来时每次只能向右或向下,反之向上或向左。

俩种解法:

1  费用流法:思路转化:从左上角流出2的流量,(表示走俩条路),归于右下角,可以走就有边(右和下),权为负的费用,源点连起点,汇点连终点,流量为2. 除源汇外所有点一分为2,Y向X对应点有流量1的边,之前边为X到Y的(原图),这样处理解决每个点只最多走一次(除了源汇外)(X部只出,Y部要出必先回到X对应点)。跑最小费用最大流即可。


2:dp法:(感谢XX大牛的提示)俩个点同时走,走了第K步状态:为x1,y1;x2,y2,  由于(x1+y1=k,x2+y2=k),状态压缩为3维,每个状态表示当前这步俩个点的横左边。

 dp[k][x1][x2]=max(dp[k-1][x1][x2],dp[k-1][x1][x2-1],dp[k-1][x1-1][x2],dp[k-1][x1-1][x2-1])


方法1:

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int a[50][50];
int nume=0;int e[50000][4];int head[2000];
int n;
void inline  adde(int i,int j,int c,int w)
{
    e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
    e[nume][2]=c;e[nume++][3]=w;
    e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
    e[nume][2]=0;e[nume++][3]=-w;
}
int inq[2000];int pre[2000];int prv[2000];
int d[2000];
bool spfa(int &sum)
{
    for(int i=0;i<=2*n*n+2;i++)
          {
              inq[i]=0;
              d[i]=inf;
          }
    queue<int>q;
    q.push(2*n*n);
    inq[2*n*n]=1;
    d[2*n*n]=0;
    while(!q.empty())
    {
        int cur=q.front();
        q.pop();
        inq[cur]=0;
        for(int i=head[cur];i!=-1;i=e[i][1])
        {
            int v=e[i][0];
            if(e[i][2]>0&&d[cur]+e[i][3]<d[v])
            {
                d[v]=d[cur]+e[i][3];
                pre[v]=i;
                prv[v]=cur;
                if(!inq[v])
                {
                    q.push(v);
                    inq[v]=1;
                }
            }
        }
    }
    if(d[2*n*n+1]==inf)return 0;
    int cur=2*n*n+1;int minf=inf;
    while(cur!=2*n*n)
    {
        minf=e[pre[cur]][2]<minf?e[pre[cur]][2]:minf;
        cur=prv[cur];
    }
     cur=2*n*n+1;
    while(cur!=2*n*n)
    {
        e[pre[cur]][2]-=minf;
        e[pre[cur]^1][2]+=minf;
        cur=prv[cur];
    }
    sum+=minf*d[2*n*n+1];
    return 1;
}

int mincost()
{
    int sum=0;
    while(spfa(sum));
    return sum;
}
void init()
{
    nume=0;
    memset(head,-1,sizeof(head));
}
int main()
{
    while(~scanf("%d",&n))
    {
        init();
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
             scanf("%d",&a[i][j]);
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
            {
                if(i+1<n)
                adde(i*n+j,(i+1)*n+j+n*n,1,-a[i+1][j]);
                if(j+1<n)
                adde(i*n+j,i*n+j+1+n*n,1,-a[i][j+1]);
            }
        for(int i=0;i<n*n;i++)
        {
            adde(i+n*n,i,1,0);
        }
         adde(2*n*n,0,2,0);
        adde(2*n*n-1,2*n*n+1,2,0);
        int ans=-mincost();
       ans+=a[0][0];
       ans-=a[n-1][n-1];
        printf("%d\n",ans);
    }
    return 0;
}


方法2

;

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int a[50][50];
int dp[80][50][50];
int max(int x,int y,int z,int t)
{
    if(x>=y&&x>=z&&x>=t)return x;
    if(y>=x&&y>=z&&y>=t)return y;
    if(z>=x&&z>=y&&z>=t)return z;
    return t;
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        memset(dp,0,sizeof(dp));
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
             scanf("%d",&a[i][j]);
           dp[0][0][0]=a[0][0];
           dp[1][0][1]=a[0][1]+a[0][0]+a[1][0];

          for(int k=1;k<=2*n-2;k++)
          {
              for(int x1=0;x1<=k&&x1<n;x1++)
              {
                  for(int x2=0;x2<=k&&x2<n;x2++)
                  {
                      if(x1!=x2)
                      {
                          if(x1>0&&x2>0)
                        dp[k][x1][x2]=max(dp[k-1][x1][x2],dp[k-1][x1][x2-1],dp[k-1][x1-1][x2],dp[k-1][x1-1][x2-1]);
                        else if(x1==0&&x2>0)
                        {
                            dp[k][x1][x2]=max(dp[k-1][x1][x2],dp[k-1][x1][x2-1],0,0);
                        }
                        else
                        {
                            dp[k][x1][x2]=max(dp[k-1][x1][x2],dp[k-1][x1-1][x2],0,0);
                        }
                        dp[k][x1][x2]+=(a[x1][k-x1]+a[x2][k-x2]);

                      }
                  }
              }
          }
          int ans=dp[2*n-3][n-2][n-1]+a[n-1][n-1];
          cout<<ans<<endl;
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值