递归式-代入法求解过程

代入法

substitution method

  1. Guess the from of the solution
  2. verify by induction
  3. solve the consts

example

T ( n ) = 4 T ( n / 2 ) + n T(n) = 4T(n/2) + n T(n)=4T(n/2)+n
[ T ( 1 ) = Θ ( 1 ) ] [T(1) = \Theta(1)] [T(1)=Θ(1)]

—Guess: T ( n ) = O ( n 3 ) T(n) = O(n^3) T(n)=O(n3)
—Assume: T ( k ) ≤ c k 3 , f o r   k < n T(k) \leq ck^3, for \:k < n T(k)ck3,fork<n

T ( n ) = 4 T ( n / 2 ) + n ≤ 4 c ( n / 2 ) 3 + n T(n) = 4T(n/2)+n \leq 4c(n/2)^3+n T(n)=4T(n/2)+n4c(n/2)3+n
= c 2 n 3 + n =\frac{c}{2}n^3+n =2cn3+n
= c n 3 − ( c 2 n 3 − n ) =cn^3-(\frac{c}{2}n^3 - n) =cn3(2cn3n)
≤ c n 3 \leq cn^3 cn3, 当且仅当 ( c 2 n 3 − n ) ≥ 0 (\frac{c}{2}n^3 - n) \geq 0 (2cn3n)0. example: ∃   c ≥ 1 , n ≥ 2 \exists \: c \geq 1, n \geq 2 c1,n2

Base case, T ( 1 ) = Θ ( 1 ) ≤ c T(1) =\Theta(1) \leq c T(1)=Θ(1)c, 只要 c c c足够大即可满足。

由此,可以看到 T ( n ) = O ( n 3 ) T(n)=O(n^3) T(n)=O(n3)是成立的。
直观上来看,按照渐进趋势,当 n n n趋于无穷大时, ∃   s o m e   c   s . t .   ( c 2 n 3 − n ) ≥ 0 \exists \:some \:c \: s.t.\: (\frac{c}{2}n^3-n)\geq 0 somecs.t.(2cn3n)0成立。证毕。

鉴于此,我们可以看到,要使上述归纳成立,则余数 ( c 2 n 3 − n ) ≥ 0 (\frac{c}{2}n^3-n)\geq 0 (2cn3n)0,且为常数比较好。因此,再次猜测如下:
—Guess: T ( n ) = O ( n 2 ) T(n) = O(n^2) T(n)=O(n2)
—Assume: T ( k ) ≤ c k 2 , f o r   k < n T(k) \leq ck^2, for \:k < n T(k)ck2,fork<n

T ( n ) = 4 T ( n / 2 ) + n ≤ 4 c ( n / 2 ) 2 + n T(n) = 4T(n/2)+n \leq 4c(n/2)^2+n T(n)=4T(n/2)+n4c(n/2)2+n
= c n 2 + n =cn^2+n =cn2+n
= c n 2 − ( − n ) =cn^2-(-n) =cn2(n)
直观上, 我们感觉到 T ( n ) = O ( n ) T(n) = O(n) T(n)=O(n)成立, 但是没有证明归纳法的严格形式 T ( n ) ≤ c n 2 T(n) \leq cn^2 T(n)cn2
造成这种情况的原因, 可能是我们在假设时忽略了低阶项的缘故, 因此

—Assume: T ( k ) ≤ c 1 k 2 − c 2 k , f o r   k < n T(k) \leq c_1k^2 - c_2k, for \:k < n T(k)c1k2c2k,fork<n

T ( n ) = 4 T ( n / 2 ) + n ≤ 4 ( c 1 ( n / 2 ) 2 − c 2 ( n / 2 ) ) + n T(n) = 4T(n/2)+n \leq 4 \big(c_1(n/2)^2 - c_2(n/2) \big) +n T(n)=4T(n/2)+n4(c1(n/2)2c2(n/2))+n
= c 1 n 2 − 2 c 2 n + n =c_1n^2 - 2c_2n + n =c1n22c2n+n
= c 1 n 2 − c 2 n − ( c 2 − 1 ) n =c_1n^2 - c_2n - (c_2 - 1)n =c1n2c2n(c21)n, 当 c 2 − 1 ≥ 0 c_2 - 1 \geq 0 c210, 即 c 2 ≥ 1 c_2 \geq 1 c21
≤ c 1 n 2 − c 2 n \leq c_1n^2 - c_2n c1n2c2n

Base case, T ( 1 ) = Θ ( 1 ) ≤ c 1 − c 2 T(1) =\Theta(1) \leq c_1 - c_2 T(1)=Θ(1)c1c2, 只要 c 1 c_1 c1相对于 c 2 c_2 c2足够大即可满足
T ( 1 ) = Θ ( 1 ) T(1) = \Theta (1) T(1)=Θ(1)
证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值