利用opencv的hog+svm实现细胞识别分类器

本文介绍了如何利用opencv中的HOG特征和SVM算法实现细胞识别分类器。通过特征提取、样本训练和目标检测三个步骤,详细阐述了细胞识别的过程,包括正负样本的选择、尺寸标准化、SVM训练以及检测器的生成和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用opencvhog+svm实现细胞识别分类器

 

图像处理中的细胞识别和人脸识别可以这样来类比,图像中的一张张人脸就是一个个细胞。

模式识别的关键在于样本库的选取,识别率也只能在和样本库比较接近的环境下才能保证。主要工作是三部分一是特征提取,二是样本库的训练train,三是目标检测detect

一.特征提取

特征提取采用的是HOG特征即HOG描述子,该特征在行人检测中效果非常好。而一般人脸识别采用的是haar特征,这在opencv中都有实现,并都给出了相应的分类器,效果都

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值