PIXOR: Real-time 3D Object Detection from Point Clouds
论文链接:http://www.cs.toronto.edu/~wenjie/papers/cvpr18/pixor.pdf
代码链接:https://github.com/Yachao-Zhang/PIXOR
摘要:本文是18年CVPR,时间比较久了网上解读版本很多,本文只是记录一下在阅读论文时感觉比较重要的部分细节。该文的主要思想是想利用已有的2D卷积技术实现快速的点云三维目标检测,即通过将雷达数据转化为img形的矩阵,利用修改后的网络模型(backbone和head)实现类别预测和位置回归;主要流程看下图:

1、点云转化为img形的矩阵(Input representation):
可以从上图看出,这个representation包含有很多的二维的矩阵,具体是36个,类别RGB图像的3个矩阵的叠加,其中35个是 强度特征,1个是反射率特征,这两个特征在muti-view 3D目标检测一文中有详细说明。强度特征矩阵的大小是如何定义的,选取一个感兴趣的区域(矩形的)长宽高分别为L W H,那么为了能够使其像素化,需要将这个大的区域分为若干个小区域的拼接,统计每个小区域中的点的个数为最后的像素值;划分的分辨率分别为:

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



