nyoj-755-整数性质

整数性质

时间限制: 500 ms  |  内存限制: 65535 KB
难度: 1
描述

我们知道,在数学中,对于任意两个正整数ab,必定存在一对整数st使得sa+tb=gcd(a,b)。

输入
多组测试数据。
每组数据输入两个非负整数a和b且a+b>0且a不等于b。
其中0<=a,b<100000。
输出
输出满足条件的 s 和 t 。
样例输入
2 4
3 8
737 635
样例输出
1 0
3 -1
193 -224
提示

运用欧几里得定理求得的才是正确答案。

/*
扩展欧几里德定理

对于与不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数。那么存在唯一的整
数 x,y 使得 gcd(a,b)=ax+by。
设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab<>0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以
结束。
*/
#include<stdio.h>
int s,t;
void extend_Euclid(int a,int b)
{
    int k;
    if(a==0)
    {
        s=0;
        t=1;
        return ;
    }
    else if(b==0)
    {
        s=1;
        t=0;
        return ;
    }
    else
    {
        extend_Euclid(b,a%b);
        k=s;
        s=t;
        t=k-a/b*t;
    }
}
int main()
{
    int a,b;
    while(scanf("%d%d",&a,&b)!=EOF)
    {
        extend_Euclid(a,b);
        printf("%d %d\n",s,t);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值