AI算力组合——kettle开发37

        日常中,也存在部分场景,我们表输入是没有唯一性主键的,我们无法判断哪些数据有更新和插入,但我们又不能用裁剪表来直接删除后再更新,这时候我们该如何是好。很多人会想到,那就提高算力,提高数据处理速度就好,在1秒时间内完成100万数据的处理。理论上是可行,但是正如ChatGpt的发展会受到算力的制约一样,我们来分析下,怎么通过调整数据处理策略来提高效率并保证数据的可用性。

一、AI转移
        1、极简数据源

        因为我们没办法去提高主键,导致我们只能采用全量更新的方式来处理数据,因此我们需要将数据表输入的时间转移,我们只能在极端的时间内完成数据的更新,通常在1s内,因此表输入的读取时间是不允许超过0.2秒的,此时我们需保证表输入的SQ是select * from table。

        其中的table而且数据量不能太大,只能保存需插入更新的数据,并且表输入不能包含任何where条件加字段计算等来增加耗时。因此此时的数据源是极简的。

        2、AI转移

        我们知道在数据处理还有一个江湖必杀技叫“空间换时间”。所谓的空间换时间,就是将整个数据步骤进行拆分,将每个步骤的数据都保存下来,保证每一步都是最高效的。因此也叫做1+1>2。此时的整体思路就是将我们需要更新的数据,保存至另外一个表里面。然后我们删除更新时间段的数据,然后再进行数据的插入。

        因此整个过程变成了,更新数据输入+更新时间段数据删除+更新数据输出。因为不涉及数据的更新操作,操作效率还是非常高的,下面我们详细讲解下实现过程。

二、多线程算力分解

1、历史数据输入

如下图所示我们只需要更新近90天的数据即可,根据实际要求来调整,即一般业务一个月以后就会关账,就不允许修改历史数据了。如何所示将需更新数据保存至oa_gcpycll_csh表中。

  2、更新时间段数据删除

         如下图所示,将更新时间数据从目标表删除,在此次转换中,表名为oa_gcpycll,对应参考代码如下所示,其中id是一个主表中的id并不是唯一的。

delete from  oa_gcpycll  where id in (
        select distinct ID  from  oa_gcpycll_csh

);
commit; --清除历史数据再插入历史数据

最后我们将更新数据输出至目标表oa_gcpycll,对应操作如下图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沙漏无语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值