史上最直白的pca教程 之 一

本文深入浅出地介绍了PCA(主成分分析)的理论推导,包括数据均值化处理,以及PCA如何寻找数据的主要方向。通过Python实现展示了PCA算法,处理后的数据呈现出主要成分并简化了复杂性。
摘要由CSDN通过智能技术生成

PCA理论推导

X=x1,1x2,1...xm,1x1,2x2,2...xm,2............x1,nx2,n...xm,n

XRm×n ,式的每列是一个样本,每个样本有 m 个属性,一共有 n 个样本。注意,这里的每个样本都经过均值化处理。

数据通常是含糊的,有噪声的,不明确的。这种含糊和不明确,体现在它的协方差阵的多数元素都是非零值。比如, X 的协方差阵就是:

CX=1n1XXT

其中, 1n1 是一个实数系数, CXRm×m

需要从数据找到一个不含糊的,低噪声的方向。这个需求,在本质上就是寻找一个矩阵,用它对 X 做变换,使得变换后的新矩阵的协方差阵大多数元素的值是零,最好的情况是,只有主对角线非零,其他都是零。令

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值