PCA理论推导
X=⎛⎝⎜⎜⎜⎜x1,1x2,1...xm,1x1,2x2,2...xm,2............x1,nx2,n...xm,n⎞⎠⎟⎟⎟⎟
X∈Rm×n ,式的每列是一个样本,每个样本有 m 个属性,一共有
数据通常是含糊的,有噪声的,不明确的。这种含糊和不明确,体现在它的协方差阵的多数元素都是非零值。比如, X 的协方差阵就是:
其中, 1n−1 是一个实数系数, CX∈Rm×m 。
需要从数据找到一个不含糊的,低噪声的方向。这个需求,在本质上就是寻找一个矩阵,用它对 X 做变换,使得变换后的新矩阵的协方差阵大多数元素的值是零,最好的情况是,只有主对角线非零,其他都是零。令