史上最直白的pca教程 之 一

本文深入浅出地介绍了PCA(主成分分析)的理论推导,包括数据均值化处理,以及PCA如何寻找数据的主要方向。通过Python实现展示了PCA算法,处理后的数据呈现出主要成分并简化了复杂性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA理论推导

X=x1,1x2,1...xm,1x1,2x2,2...xm,2............x1,nx2,n...xm,n

XRm×n ,式的每列是一个样本,每个样本有 m 个属性,一共有 n 个样本。注意,这里的每个样本都经过均值化处理。

数据通常是含糊的,有噪声的,不明确的。这种含糊和不明确,体现在它的协方差阵的多数元素都是非零值。比如, X 的协方差阵就是:

CX=1n1XXT

其中, 1n1 是一个实数系数, CXRm×m

需要从数据找到一个不含糊的,低噪声的方向。这个需求,在本质上就是寻找一个矩阵,用它对 X 做变换,使得变换后的新矩阵的协方差阵大多数元素的值是零,最好的情况是,只有主对角线非零,其他都是零。令

Canoco for Windows 是新代的 CANOCO 软件,是生态学应用软件中用于约束与非约 束排序的流行工具。Canoco for Windows 整合了排序以及回归和排列方法学,以便得到健 全的生态数据统计模型。Canoco for Windows 包括线性和曲线单峰方法。使用 Canoco for Windows 进行排序,能够洞察: ● 生物群落结构 ● 植物与动物群落以及它们的环境之间的联系 ● 个对环境和(或)其生物群落的假设冲击所能造成的影响 ● 在生物群落上进行的复杂生态学和生态毒理学实验的相关处理所能造成的影响 个排序被计算出来后,排序图可以立即显示在显示器上。Canoco 具体独特的能力,可 以说明用协变量表示的背景变异,而用它的扩展工具来进行排列测试,包括测试的互动效果。 这些独特的特性使得 Canoco for Windows 能特别有效的解决应用研究方面的问题。 二 软件模块 The Canoco for Windows 软件包主要包含以下几个模块: ● Canoco for Windows:软件包的核心,用来指定要分析的数据和排序模型,排序方法 以及分析结果的查看等基本操作命令均被集中在该模块的对话框中 ● WcanoImp : 将以电子表格形式(Excel 等)保存的外部数据转化为 CANOCO 识别的 形式 ● CanoDraw 4.0 for Windows:用来绘制各种类型的排序图,同时也可以生成多种等值 线和回归模型图,并进步深层次发掘排序结果,该模块可以直接从主程序界面工 具栏激活 ● CanoMerge:合并 Canoco 识别的 dta 类型数据文件,并可以将数据文件以带制表分 隔符的文本形式输出(基本常用统计软件均兼容该类型文件),同时该模块具有滤掉 低频率物种的功能 ● PrCoord:对特定数据集进行主坐标分析以及冗余分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值