hustqb的博客

机器学习、深度学习、Python等方面的学习笔记

不同版本Inception Network介绍

声明 参考A simple Guide to the Versions of the Inception Network,同时有一定的原创性。 现在网上有很多有关Inception的文章,但是都不如这篇英文文章介绍得好。 本文希望读者提前对神经网络、CNN有所了解。 Inception网络是卷...

2018-12-28 16:04:34

阅读数 150

评论数 1

5分钟了解玻尔兹曼机(RBM)

声明:译自A Beginner’s Guide to Restricted Boltzmann Machines (RBMs) Definition & Structure 玻尔兹曼机(RBM)由深度学习先驱Geoffrey Hinton提出,可用于降维、分类、回归、协同过...

2018-12-06 10:38:47

阅读数 219

评论数 0

4个帮你编写完美Python脚本的技巧

声明: 译自How to Write Perfect Python Command-line Interfaces --Learn by Examples 本文会基于例程介绍4个完善Python脚本的技巧 四个技巧 命令行参数解析中设置默认值 异常处理 帮助/说明文档 进度条控件 从一个例...

2019-03-06 10:56:55

阅读数 67

评论数 0

从二项分布推导泊松分布

参考:可汗学院 从二项分布推导泊松分布   二项分布:P(X=k)=Cnk⋅pk⋅(1−p)n−kP(X=k) = C_n^k\cdot p^k\cdot (1-p)^{n-k}P(X=k)=Cnk​⋅pk⋅(1−p)n−k 抛硬币   以抛硬币为例,ppp可以表示抛一次硬币,朝上的概率,P(X=...

2018-12-22 19:56:39

阅读数 449

评论数 0

Alexnet论文介绍(ImageNet Classification with Deep Convolutional Neural Networks)

摘要   本文训练了一个深度卷积神经网络进行ImageNet LSVRC-2010图片分类比赛(1000各类别,共120万高质量标注的图片),在top1测试场景下错误率37.5%,在top-5测试场景下错误率17.0%,远小于之前最好的结果。   网络的大体结构:6000万个参数、65万个神经节点...

2018-12-14 11:45:33

阅读数 186

评论数 0

HeadFirst设计模式——如何实现自己的鸭鸣器不继承Duck类?

声明: 《Head First设计模式》23页提问,如何实现自己的鸭鸣器不继承Duck类?本文解答这个问题。 正如该书前面所说,通常【有一个】比【是一个】更好。MallardDuck, RedheadDuck, ModelDuck都是鸭子,所以它们继承了父类Duck,也就继承了父类的属性fl...

2018-12-08 20:03:29

阅读数 136

评论数 0

Sampling Matters in Deep Embdding Learning论文研究

声明: 论文链接Sampling Matters in Deep Embdding Learning Sampling Matters in Deep Embdding Learning   这是基于one-shot learning中的metric learning范畴做的研究。metric...

2018-11-13 22:01:20

阅读数 141

评论数 0

Matching Networks for One Shot Learning论文分析

Matching Networks for One Shot Learning Abstract 研究领域: One Shot Learning(小样本学习)从少量样本中快速学习,是传统监督学习和Deep Learning无法解决的问题,该研究领域被称为小样本学习。 创新: 以下两种方法结合: ...

2018-11-08 14:49:18

阅读数 715

评论数 0

tf.control_dependencies()

声明: 翻译tensorflow官方文档并进行了总结 参考博客tensorflow学习笔记(四十一):control dependencies tf.control_dependecies() tf.control_dependencies是tensorflow中的一个flow顺序控制机制,作...

2018-10-30 17:15:32

阅读数 1312

评论数 0

最大似然估计、贝叶斯估计和最大后验估计

声明: 转载自参数估计:最大似然、贝叶斯与最大后验 前言 中国有句话叫“马后炮”,大体上用在中国象棋和讽刺人两个地方,第一个很厉害,使对方将帅不得动弹,但这个跟我们今天说的基本没关系;第二个用途源于第一个,说事情都发生了再采取措施,太迟了。但不可否认,我们的认知就是从错误中不断进步,虽然...

2018-08-25 11:51:52

阅读数 181

评论数 0

TensorFlow SavedModel保存和加载模型

声明: 参考TensorFlow官方文档 SavedModel 如果你想保存或恢复模型,我们推荐使用SaveModel. SaveModel是一种与语言无关,可恢复的密封式序列化格式。TensorFlow提供了多种与SavedModel交互的机制,如tf.saved_model API、...

2018-06-23 11:30:03

阅读数 4391

评论数 0

TensorFlow保存和恢复变量——tf.train.Saver()

声明: 参考Tensorflow官方文档 tf.train.Saver() 保存变量 import tensorflow as tf # Create some variables. v1 = tf.get_variable("v1_name&am...

2018-06-22 17:11:49

阅读数 1257

评论数 0

7天微课程——用Python进行时间序列预测

声明: 本文是系列课程的开始 本文是对机器学习网站课程的翻译 尊重原作者,尊重知识分享者 课程列表 时间序列与监督学习 下载时间序列数据集 数据可视化 persistence模型 自回归模型 ARIMA模型 “Hello World”项目 每个课程将占用1-30min,加油干吧...

2018-06-20 09:22:45

阅读数 262

评论数 0

7天微课程day7——完整项目:用Python预测法国香槟的月销量

声明: 终于到最后一天了,开不开心,激不激动?来瓶香槟奖励一下自己。 然后今天的任务很艰巨….毕竟最后一天了,笔者也有点小激动,可能行文风格有点飘,哈哈不要见怪。 另外,再安利一波,加入这个机器学习社区跟着大神Jason一起学习吧。 用Python预测法国香槟的月销量 要做好时间序列...

2018-06-19 22:16:42

阅读数 1020

评论数 0

Python lag_plot()源码

能找到本文说明您也是想用lag_plot()函数却找不到它的参数说明文档,花2分钟阅读本文,然后problem solved! lag_plot lag_plot()用于时间序列的自相关性分析,可以描绘pandas对象series中当前值和滞后值之间的散点图。其源码在~/pandas/plot...

2018-06-19 11:59:11

阅读数 436

评论数 0

7天微课程day6——用ARIMA模型进行时间序列预测

声明: 本文是系列课程的第6课 本文是对机器学习网站课程的翻译 尊重原作者,尊重知识分享 用ARIMA模型进行时间序列预测 ARIMA(AutoRegressive Intergrated Moving Average)是一个非常非常流行的时间序列预测模型。 通过本文,你将了解: ...

2018-06-18 22:41:09

阅读数 1755

评论数 1

7天微课程day5——用于时间序列的自相关模型AM

声明: 本文是系列课程的第5课 本文是对机器学习网站课程的翻译 尊重原作者,尊重知识分享 用于时间序列的自相关模型AM AM简单高效,它以t-1时刻的值为输入,经过回归方程获取预测值。 在本文中,你讲学到: 如何研究时间序列的自相关性 如何定义一个自相关模型 如何使用自相关模型...

2018-06-18 11:36:42

阅读数 461

评论数 0

7天微课程day4——时间序列预测的baseline

声明: 本文是系列课程的第4课 本文是对机器学习网站课程的翻译 尊重原作者,尊重知识分享 时间序列预测的baseline 创建一个baseline总是时间序列预测的关键一步。一个baseline可以帮助我们了解模型的好坏。本文将会创建一个基本的时间序列预测模型——persistence模...

2018-06-18 10:19:11

阅读数 738

评论数 0

7天微课程day3——用Python进行时间序列可视化

声明: 本文是系列课程的第三课 本文是对机器学习网站课程的翻译 尊重原作者,尊重知识分享 用Python进行时间序列可视化 Python中有6中可视化时间序列的方法 时间序列本身的特性决定了它很容易被可视化,特别适用于折线图。然而,还有一些其他方法可以可视化时间序列,而且会展现时间...

2018-06-17 11:15:57

阅读数 988

评论数 0

7天微课程day2——下载序列数据集

声明: 本文是系列课程的第二课 本文是对机器学习网站课程的翻译 尊重原作者,尊重知识分享 下载序列数据集 要使用的Python第三方库:Pandas 通过本文,你可以学到: 如何使用pandas读取一个csv文件。 如何查看加载的数据,如何计算数据的统计量。 如何可视化时间序列 ...

2018-06-16 14:53:13

阅读数 308

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭