[deeplearning-005] 一般形式的反向传导算法BP最简推导-3

前述两篇推导还是太繁琐了,有一种更简单的方式。因为排版的问题,直接贴图。







根据上述公式,可以实现一个简单的验证性python代码

#!/usr/bin/env python
#!-*- coding:utf-8 -*-

#bp alogrithm

import math
import numpy as np

#active function
def f(x):
    return 1.0/(1+math.exp(-x))

#应激函数的一阶导数
def d_f(x):
    return f(x)*(1-f(x))

#神经网络层数
p=3
#神经网络每层的神经元数量,第一个值是None,是为了脚标从1开始
d = [None, 2,3,1]

#有一个None,是为了脚标从1开始
#权重矩阵
W = [None]
#bias
b = [None]

#z^l_{j,i}
z = [None]
#a^l_{j,i}
a = [None]
#a一阶偏导
del_a = [None]

for i in range(1,p):
    #随机初始化权重矩阵
    W.append(np.array(0.01*np.random.rand(d[i+1], d[i])))
    #随机初始化bias
    b.append(np.array(0.01*np.random.rand(1, 1)))

for i in range(1,p+1):
    #初始化z值
    z.append(np.zeros((d[i],1), np.float64))
    #初始化a值
    a.append(np.zeros((d[i], 1), np.float64))
    #初始化a的一阶偏导
    del_a.append(np.zeros((d[i], 1), np.float64))

#样本
x = np.array([0.0, 1.0], np.float64).reshape((2,1))
y = np.array([1.0], np.float64)
#学习速率
eta = 0.1;

###开始计算
n = 1
#最大迭代次数
max_iter = 200

#将输入层设置为样本x
a[1]=x

#循环计算
while n <= max_iter:
    print('第'+str(n)+'迭代'+'-'*20)

    #计算z^l_{j,i}和z^l_{j,i}
    for l in range(2,p+1):
        print('*'*5)
        print(' ' * 2, '计算z[' + str(l) + ']')
        print(' ' * 4, 'a['+str(l-1)+']=', a[l-1])
        print(' ' * 4, 'W['+str(l-1)+']=', W[l-1])
        print(' ' * 4, 'b['+str(l-1)+']=', b[l-1])
        z[l] = np.dot(W[l-1], a[l-1])+b[l-1]
        print(' ' * 4, 'z['+str(l)+']=',z[l])

        print(' '*2,'计算a['+str(l)+']')
        for i in range(d[l]):
            a[l][i,0] = f(z[l][i,0])
        print(' ' * 4, 'a['+str(l)+']=', a[l])
    print(' ' * 2, '计算a和z结束')

    #计算\frac{\partial J}{\partial a^l_{j,i}}
    print('*'*5)
    print(' '*2, '计算del_a')
    #第p层需要单独计算
    for i in range(d[p]):
        del_a[p][i] = -(y[i]-a[p][i,0])
    print(' '*4, 'del_a['+str(p)+']=', del_a[p])
    #第i层
    print(' '*4, '**')
    for i in range(p-1, 0,-1):
        #第i层的第j个神经元
        for j in range(d[i]):
            #先将其值置0
            del_a[i][j,0] = 0
            #然后求和
            for k in range(d[i+1]):
                del_a[i][j,0] += W[i][k,j]*d_f(z[i+1][k,0])*del_a[i+1][k][0]
        print(' ' * 4, 'del_a[' + str(i) + ']=', del_a[i])

    #计算新的W_l_{j,i}
    #第l层
    for l in range(p-1,0,-1):
        #第l层第i个神经元
        print('W['+str(l)+']=', W[l])
        print('b['+str(l)+']=', b[l])
        for i in range(d[l]):
            for j in range(d[l+1]):
                W[l][j,i] -= eta*del_a[l+1][j]*d_f(z[l+1][j,0])*a[l][i,0]
                b[l] -= eta*del_a[l+1][j]*d_f(z[l+1][j,0])
        print('new W[' + str(l) + ']=', W[l])
        print('new b[' + str(l) + ']=', b[l])
    n += 1


latex的文档

\documentclass[a4paper, 12pt]{article}
\usepackage{CJK}

%define the tile
\title{BackPropagation Alogrithom}

\usepackage{graphicx}
\usepackage{pythonhighlight}

\begin{document}

\begin{CJK}{UTF8}{gkai}

%generates the title
\maketitle

\section{前馈神经网络}
前馈神经网络:设神经网络的层数是$p$,各层分别记为$L^1,L^2,...,L^p$,每层的神经元数量记为$d^1, d^2,...,d^p$,每个神经元的应激函数记为$f(x)$。

训练集是$\{(\mathbf{x}^k, \mathbf{y}^k) \} k=1,...,m$,显而易见,$\mathbf{x^k} \in R^{d^1\times 1}$,$\mathbf{y^k} \in R^{d^p\times 1}$,$\mathbf{x}^k$是一维列向量且元素个数跟神经网络输入层的神经元数量相同,同理$\mathbf{y}^k$是一维列向量且元素个数跟神经网络输出层神经元数量相同。


为推导方便,设$(\mathbf{x}, \mathbf{y})$是一组样本。根据神经网络的定义,在第$l$层,第$i$个神经元的输入值记为$z^l_i$,输出值记为$a^l_i$,有如下关系:
\begin{eqnarray*}
a^l_i &=& f(z^l_i)\\
z^{l+1}_j &=& \sum_{i=1}^{d^l}\mathbf{W}^{l}_{j,i}a^l_i+ \mathbf b^l
\end{eqnarray*}
上述两式,定义了神经网络的计算方式。其中,$\mathbf{W}^l$是第$l$层和第$l+1$层之间的权重矩阵,$\mathbf{W}^l_{j,i}$是第$l$层的第$i$个神经元的与第$l+1$层的第$j$个神经元的权重系数,$\mathbf b^l$是第$l$层的bias。对于输入层,可以视为$a^1_i=\mathbf{x}_i$,也就是说,输入层的第$i$个输出值是样本$\mathbf x$的第$i$个元素。

神经网络对$(\mathbf{x},\mathbf{y})$拟合误差的代价函数如下:
\begin{eqnarray*}
J(\mathbf{W},\mathbf{b};\mathbf{x}, \mathbf{y})&=&\frac{1}{2}\sum_{q=1}^{d^p}(\mathbf{y}_q-a^p_q)^2\\
&=&\frac{1}{2}\sum_{q=1}^{D}(\mathbf{y}_q-a^p_q)^2\\
&=&\frac{1}{2}\sum_{q=1}^{D}(\mathbf{y}_q-f(z^p_q))^2\\
\end{eqnarray*}
其中,$D=d^p$,代价函数的形式在求解中不会变动,因此用$D$以避免计算中的误解,$\mathbf{y}_q$是$\mathbf{y}$的第$q$个元素,后文$J(\mathbf{W},\mathbf{b};\mathbf{x}, \mathbf{y})$将简写为$J$。


\section{权重系数和偏差的一阶偏导求解}

前馈神经网络的输出,是样本值进入输入层,从前向后,逐层计算。BP算法求解优化问题,让拟合误差从后向前,从输出层逐层传递到隐层和输入层,由此优化所有权重系数,由此得名BackPropagation反向传播。BP算法的求解推导,本质就是推导相邻两层之间的关系。

$J$对$\mathbf b^l$的一阶偏导通式:
\begin{eqnarray*}
\frac{\partial J}{\partial \mathbf b^l} 
&=& \sum_{j=1}^{d^{l+1}} \frac{\partial{J}}{\partial a^{l+1}_j}\frac{\partial a^{l+1}_j}{\partial z^{l+1}_j}\frac{\partial z^{l+1}_j}{\partial \mathbf b^l}\\
&=& \sum_{j=1}^{d^{l+1}}  \frac{\partial{J}}{\partial a^{l+1}_j}\frac{\partial a^{l+1}_j}{\partial z^{l+1}_j}\\
&=& \sum_{j=1}^{d^{l+1}}  \frac{\partial{J}}{\partial a^{l+1}_j}f^{'}(z^{l+1}_j)\\
\end{eqnarray*}

$J$对$\mathbf{W}^l_{j,i}$的一阶偏导通式:
\begin{eqnarray*}
\frac{\partial{J}}{\partial \mathbf{W}^l_{j,i}}
&=&\frac{\partial{J}}{\partial a^{l+1}_j}\frac{\partial a^{l+1}_j}{\partial z^{l+1}_j}\frac{\partial z^{l+1}_j}{\partial \mathbf{W}^{l}_{j,i}}\\
&=&\frac{\partial{J}}{\partial a^{l+1}_j}\frac{\partial a^{l+1}_j}{\partial z^{l+1}_j}a^{l}_{j,i}\\
&=&\frac{\partial{J}}{\partial a^{l+1}_j}f^{'}(z^{l+1}_j)a^{l}_{i}
\end{eqnarray*}

上式的$\frac{\partial{J}}{\partial a^{l+1}_j}$,也可以通过反向传播的方式求解,其通式$\frac{\partial{J}}{\partial a^{l}_j}(l< p)$求解如下:
\begin{eqnarray*}
\frac{\partial{J}}{\partial {a}^l_{j}}
&=&\sum_{r=1}^{d^{l+1}}\frac{\partial J}{\partial a^{l+1}_r} \frac{\partial a^{l+1}_r}{\partial z^{l+1}_r}\frac{\partial z^{l+1}_r}{\partial a^l_j}\\
&=& \sum_{r=1}^{d^{l+1}} \frac{\partial J}{\partial a^{l+1}_r} \frac{\partial a^{l+1}_r}{\partial z^{l+1}_r}\mathbf{W}^{l}_{r,j}\\
&=& \sum_{r=1}^{d^{l+1}} \frac{\partial J}{\partial a^{l+1}_r} f^{'}(z^{l+1}_r)\mathbf{W}^{l}_{r,j}\\
\end{eqnarray*}

\newpage

以梯度下降法优化$\mathbf{W}^l_{j,i}$和$\mathbf b^l$,$\eta$是学习速率,公式如下:
\begin{eqnarray*}
\mathbf{W}^l_{j,i} &=& \mathbf{W}^l_{j,i} - \eta \frac{\partial J}{\partial \mathbf{W}^l_{j,i}}\\
\mathbf{b}^l &=& \mathbf{b}^l - \eta \frac{\partial J}{\partial \mathbf{b}^l}\\
\end{eqnarray*}



\section{反向传播计算步骤}
步骤如下:

1.以极小随机值对$\mathbf W$和$\mathbf b$进行初始化。

2.样本$(\mathbf x, \mathbf y)$前向传播计算输出值。

3.计算$\frac{\partial J}{\partial a^p_{r}}$,也就是$\frac{\partial J}{\partial a^p_{r}}=-(y_r-a^p_r)$。

4.根据上面推导的公式,从后往前计算所有的$\frac{\partial{J}}{\partial a^{l}_j}$。

5.根据上面推导的公式,从后往前计算所有的$\frac{\partial{J}}{\partial \mathbf{W}^l_{j,i}}$。

6.根据上面推导的公式,从后往前计算所有的$\frac{\partial{J}}{\partial \mathbf{b}^l}$。

7.更新所有的$\mathbf W^l_{j,i}$和$\mathbf b^l$。

8.重复步骤2至7,直至终止条件达成。

\section{推广到多样本和正则化情况}
对样本集而言,考虑正则化,代价函数如下:
\begin{eqnarray*}
\mathbf J(\mathbf{W},\mathbf{b};\mathbf{X}, \mathbf{Y})
&=&\sum_{k=1}^{m}J(\mathbf{W}, \mathbf{b}; \mathbf x_k, \mathbf y_k)+ \frac{\lambda}{2}  \sum_{l=1}^{p-1} \sum_{j=1}^{d^{l+1}} \sum_{i=1}^{d^{l}} (W^l_{j,i})^2\\
\end{eqnarray*}

对$W^l_{j,i}$求一阶偏导:
\begin{eqnarray*}
\frac{\mathbf J(\mathbf{W},\mathbf{b};\mathbf{X}, \mathbf{Y})}{\partial W^l_{j,i}} 
&=&\sum_{k=1}^{m}\frac{\partial J_k}{\partial W^l_{j,i}}+ \lambda W^l_{j,i}\\
\end{eqnarray*}

从本质上来说,等价于所有样本的一阶偏导之和再加上一个系数。


\end{CJK}
\end{document}

\grid


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习在语义道路场景的多模态融合中的探索是一项研究任务,目的是通过结合多种视觉和感知模态的信息,提升对道路场景的语义理解能力。 在这个任务中,我们使用深度学习的方法来处理不同模态的数据,如图像、激光雷达和 GPS 等。我们首先将这些模态的数据进行预处理,将其转换为神经网络可以处理的格式。然后,我们构建深度神经网络模型,用于将这些模态的信息进行融合。这种融合可以是级联式的,也可以是并行式的,即同时处理多个模态,以充分利用不同模态数据之间的相关性。 在模型的训练过程中,我们使用大量的标注数据,将不同模态数据与其对应的语义标签进行匹配。通过反向传播算法,我们可以优化模型参数,使其能够准确地预测道路场景的语义信息。 深度学习的多模态融合方法在语义道路场景中有广泛的应用。通过结合不同模态的信息,我们可以更好地理解道路场景中的障碍物、车辆、行人等不同元素。这种融合方法还可以提高对不同道路环境的适应性,使得我们的模型在城市、乡村等不同场景中都能够有效地工作。 总之,深度学习的多模态融合方法对于道路场景的语义理解具有重要意义。通过结合多种视觉和感知模态的信息,我们可以提高对道路场景的认知能力,为自动驾驶、智能交通等领域的发展提供有力支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值