排序:
默认
按更新时间
按访问量

Windos环境下快速简便配置pyltp以及调用哈工大语言云

一、Windos环境下快速简便配置pyltp 在windows环境下配置pyltp一直是一件很蛋疼的事,涉及到VS2008,cmake等等东西,还总TM蜜汁安装失败。。。最近发现了一位大神发布的资源,可以很简单的实现pyltp在windows环境下的安装,下面把资源共享给大家: pyltp-0...

2018-04-25 21:52:57

阅读数:246

评论数:2

IDEA运行Stanford CoreNLP 出现error "java.lang.OutOfMemoryError: GC overhead limit exceeded"

前段时间在使用CoreNLP工作的时候出现了一个小问题,就是在运行这篇文章Stanford CoreNLP 3.6.0 使用入门 的中文例子的时候,IDEA报错error “java.lang.OutOfMemoryError: GC overhead limit exceeded”显示内存溢出,...

2018-03-23 10:27:01

阅读数:126

评论数:0

JSON格式

1. 简介 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。 可以理解为是一种跨语言的文本格式(即与具体语言无关),方便数据传输与协作,易于人阅读和编写,同时也易于机器解析和生成。 2. 结构与规则 JSON格式很简单,下面举一个例子来说明:...

2018-01-06 16:19:34

阅读数:897

评论数:0

Sublime Text 3 配置java程序运行环境

在下载好jdk之后,首先要设置环境变量。Win10设置环境与之前的方式有些不同,这里写下来备忘。 1. 在系统的环境变量中,分为用户变量和系统变量,这里的操作都是在系统变量中进行的 2. 点击“新建”,变量名为“JAVA_HOME”,变量值为jdk所在的地址,我这里为 C:\Program F...

2017-12-18 20:18:53

阅读数:439

评论数:0

TensorBoard 出现 No scalar data was found

前段时间在学习使用Tensorboard的时候,发现无法显示,提示No scalar data was found。多次检查代码后发现无异常,日志文件也正常生成,这就很奇怪了。在这里,列出网上查到的几种解决方案: 是否使用了谷歌浏览器?经实验,360浏览器是不能显示的,需要切换到Chrome浏览器...

2017-12-10 14:49:13

阅读数:426

评论数:0

Tensorflow1.4.0实现条件随机场(CRF)

关于TensorFlow实现CRF的方法我在网上找了很久也没有找到很合适的,目前最多关注的是自己写出来的CRF,比较复杂。在翻阅TensorFlow文档的时候偶然间发现TensorFlow1.4.0版本已经实现了CRF,并找到了官方例程,实现简单,在这里跟大家分享一下import numpy as...

2017-11-30 15:11:25

阅读数:1578

评论数:2

TensorFlow实现用于图像分类的卷积神经网络(代码详细注释)

这里我们采用cifar10作为我们的实验数据库。 首先下载TensorFlow Models库,以便使用其中提供的CIFAR-10数据的类。git clone https://github.com/tensorflow/models.git cd models/tutorials/image/c...

2017-11-22 22:10:59

阅读数:2748

评论数:0

tensorflow 中的reduction_indices

在tensorflow的使用中,经常会使用tf.reduce_mean,tf.reduce_sum等函数,在函数中,有一个reduction_indices参数,表示函数的处理维度,直接上图,一目了然: 需要注意的一点,在很多的时候,我们看到别人的代码中并没有reduction_indices这...

2017-11-20 19:02:34

阅读数:213

评论数:0

词法分析之Bi-LSTM-CRF框架

词法分析是NLP的一项重要的基础技术,包括分词、词性标注、实体识别等,其主要算法结构为基于Bi-LSTM-CRF算法体系,下面对Bi-LSTM-CRF算法体系进行介绍。引言首先抛开深层的技术原因,来从宏观上看一下为什么LSTM(Bi-LSTM)后接CRF效果会好。 首先引用一篇英文文献关于这个问...

2017-11-17 14:55:38

阅读数:3929

评论数:0

AliNLP架构

AliNLP 自然语言技术平台阿里AliNLP系统架构图 1. 词法分析(分词、词性、实体): - 算法:基于Bi-LSTM-CRF算法体系,以及丰富的多领域词表 2. 句法分析(依存句法分析、成分句法分析): - 算法:Shift-reduce,graph-based,Bi-LSTM ...

2017-11-16 14:51:54

阅读数:6849

评论数:0

衡量文档相似性的一种方法-----词移距离 Word Mover's Distance

问题的提出假如现在有一个任务,是判断两段文本之间的相似性,那我们应该怎么做呢?一个很自然的想法是用word2vec对两段文本的词向量化,然后再利用欧氏距离或者余弦相似性进行求解。不过这种方法有着致命的缺陷,即无法从文档整体上来考虑相似性,仅仅是基于词,这就造成了很大的信息缺失问题,下面要介绍的这种...

2017-11-12 16:24:18

阅读数:1374

评论数:0

条件随机场(CRF)

本文是结合李航《统计学习方法》以及互联网资料整理得出,感谢各位作者的贡献。 - 是判别模型 - 假设输出随机变量构成马尔科夫随机场 - 标注问题—>线性链条件随机场—>由输入序列对输出序列预测的判别模型—>对数线性模型概率无向图模型 概率无向图模型又称马尔科夫随机场,是一个...

2017-10-24 23:05:32

阅读数:762

评论数:0

XGBoost原理

本文大量参考雪伦大佬的博客 以及wepon大佬的ppt,在此表示感谢!目标函数XGBoost目标函数的定义:L(ϕ)=∑il(y^i,yi)+∑kΩ(fk)whereΩ(f)=γT+12λ||w||2 \mathcal{L}(\phi)=\sum_il(\hat y_i,y_i)+\sum_k\O...

2017-10-09 22:17:25

阅读数:381

评论数:0

局部线性嵌入(LLE)

1、介绍本文参考:http://www.cnblogs.com/pinard/p/6266408.html(1)概述LLE属于流形学习(Manifold Learning)的一种,通常流形理解起来比较抽象,在LLE里,我们可以简单的将流形看做一个不闭合的曲面,类似于下图: 而我们的目的就是将其展...

2017-09-23 17:18:23

阅读数:798

评论数:0

降维算法(LASSO、PCA、聚类分析、小波分析、线性判别分析、拉普拉斯特征映射、局部线性嵌入)

1、LASSOLASSO全称least absolute shrinkage and selection operator,本身是一种回归方法。与常规回归方法不同的是,LASSO可以对通过参数缩减对参数进行选择,从而达到降维的目的。说到LASSO,就不得不说岭回归,因为LASSO就是针对岭回归不能...

2017-09-22 21:13:51

阅读数:1043

评论数:0

拉普拉斯特征映射(Laplacian Eigenmaps)

1、介绍拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系。也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可...

2017-09-22 21:11:18

阅读数:4322

评论数:7

线性判别分析LDA(Linear Discriminant Analysis)

1、简介大家熟知的PCA算法是一种无监督的降维算法,其在工作过程中没有将类别标签考虑进去。当我们想在对原始数据降维后的一些最佳特征(与类标签关系最密切的,即与yy相关),这个时候,基于Fisher准则的线性判别分析LDA就能派上用场了。注意,LDA是一种有监督的算法。本文参考“JerryLead”...

2017-09-21 19:51:51

阅读数:449

评论数:1

常见二叉树基础算法汇总

1、二叉树的深度class Solution { public: int TreeDepth(TreeNode* pRoot) { if(!pRoot){ return 0; } int a = 1+TreeD...

2017-09-18 09:38:53

阅读数:440

评论数:0

边缘分布

最近在调研域自适应学习的时候,接触到了分布假设,即源域与目标域的边缘分布和条件分布均不同。条件分布由于用得比较多,大家应该比较熟知;而边缘分布用的比较少,在这里记录下边缘分布的定义,备忘。边缘分布的定义1、定义 1  设F(x,y)F(x,y)为二维随机变量 (X,Y)(X,Y) 的联合分布函数,...

2017-07-21 13:00:31

阅读数:1301

评论数:0

短时傅里叶变换在EEG信号特征提取中的应用(通俗版)

众所周知,傅里叶变换的快速算法FFT可以用来对信号的频域特征进行分析,然而,FFT仅能用于平稳信号的分析,对于非平稳信号,则需要采用短时傅里叶变换(STFT)进行分析。

2017-05-15 15:46:44

阅读数:3007

评论数:13

提示
确定要删除当前文章?
取消 删除
关闭
关闭