bzoj4361 isn(树状数组优化DP)

3 篇文章 0 订阅
2 篇文章 0 订阅

要点:一个不合法的状态一定是由一个长度多1的不下降子序列转移来的,直接减掉即可。

然后就转化为求长度为i的不下降子序列个数。定义f[i,j]表示以i结尾的,长度为j的不下降子序列个数,则f[i,j] = sum(f[k,j-1]), k<i&&a[k]<=a[i]。直接转移是n三方的,可以离散化后用树状数组维护前缀和。注意由于i这一维在树状数组中被省去了,枚举j需要倒着枚举防止被自己更新。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define erp(i,a,b) for(int i=a;i>=b;--i)
#define LL long long
using namespace std;
const int inf = 0x3f3f3f3f, MAXN = 2005;
const int mo = 1000000007;

inline void add(int&a, const int&b) { a+=b; if(a>=mo) a-=mo; }
int N, a[MAXN], dat[MAXN], dn;
int jc[MAXN] = {1};
int f[MAXN][MAXN];

int bt[MAXN][MAXN]; // 长度i,值j
int idx(int x) { return lower_bound(dat+1, dat+dn+1, x) - dat; }
int h[MAXN];

void add(int k, int i, int x)
{
	for (; i<=dn; i+=i&-i)
		add(bt[k][i], x);
}
int qsum(int k, int i)
{
	int r = 0;
	for (; i>0; i-=i&-i)
		add(r, bt[k][i]);
	return r;
}

int main()
{
	scanf("%d", &N);
	rep(i, 1, N) scanf("%d", a+i), dat[i] = a[i];
	sort(dat+1, dat+N+1);
	dn = unique(dat+1, dat+N+1) - dat-1;
	rep(i, 1, N) a[i] = idx(a[i]);
	rep(i, 1, N) jc[i] = 1ll * i * jc[i-1] % mo;
	add(0, 1, 1); //0会使树状数组死循环
	rep(i, 1, N) erp(j, i, 1) //j倒着循环防止被自己更新
	{
		f[i][j] = qsum(j-1, a[i]);
		add(h[j], f[i][j]);
		add(j, a[i], f[i][j]);
	}
	int ans = 0;
	rep(i, 1, N)
	{
		add(ans, 1ll * jc[N-i] * h[i] % mo);
		if (i != N) add(ans, mo - 1ll * jc[N-i-1] * (i+1) % mo * h[i+1] % mo);
	}
	printf("%d\n", ans);
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值