MM-CamObj数据集:由上海交通大学创建,增强现有多模态大语言模型在伪装场景中能力

2024-09-24 ,由上海交通大学创建:MM-CamObj 数据集。用来增强现有大型视觉语言模型( LVLM )在伪装对象场景中的能力。数据集包括两个子集: CamObj-Align 和 CamObj-Instruct,分别用于 LVLM 训练的对齐和指令调整阶段。

数据集地址:MM-CamObj|视觉语言模型数据集|伪装对象识别数据集

一、背景:

在自然界中,动物使用各种巧妙的伪装技术来隐藏自己,避免被捕食者发现。由于这些伪装方法通常非常复杂,因此准确理解伪装场景和识别伪装物体是一项具有挑战性的任务。

多模态大语言模型(LVLMs) 在自动驾驶、医疗成像等领域取得了显著进展,但在复杂场景中,尤其是涉及伪装对象的场景中,它们仍面临挑战。这主要是由于训练数据集中缺乏与伪装场景相关的样本。

目前遇到的困难和挑战

1. 伪装对象的挑战:

  • 伪装对象与周围环境在纹理、形状和颜色上的高度相似性,使得任务变得复杂。

2. 现有数据集的局限性:

  • 现有的开源模型在理解伪装对象场景方面存在不足。

数据集地址:MM-CamObj|视觉语言模型数据集|伪装对象识别数据集

二、让我们一起来看下MM-CamObj数据集

数据集构建:

1. 样本收集:收集11,393张与伪装场景相关的图片。

2. 详细注释:每个样本包括问题和答案,以及详细的注释,如问题类型、难度级别、知识概念和答案解释。

3. 任务设计:设计了七个核心任务:Easy VQA、Hard VQA、Bbox Location、Image Caption、Count Choice、Mask Match和Mask TF。

4. 数据集分割:CamObj-Align:11,363个图文对,CamObj-Instruct:11,363张图片与68,849个对话

数据集特点:

1. 多任务:同时提供七个核心任务,覆盖不同类型的教育评估。

2. 高质量:通过人工筛选和评估,确保样本的质量和相关性。

3. 多学科:覆盖多个不同的学科,包括动物、植物、昆虫等。

通过在CamObj-Bench上对CamObj-Llava、8个现有的开源和3个闭源LVLMs进行广泛的实验,结果表明,与GPT-4o相比,作者的模型在7个任务中的4个任务上取得了25.84%的性能提升。

三、让我们展望一下数据集的应用

比如,我是一个多模态大语言模型的工作者。

我的工作中需要确保模型在处理伪装对象场景时既准确又有效。但这个任务非常复杂,需要理解场景的具体问题,并提供有效的解决方案。

当我使用了 MM-CamObj , 它可真是帮了我的大忙!

我告诉它:“嘿,给我评估一下这个伪装对象场景,要确保它符合复杂场景的处理要求,并且能够提高模型性能。” 没过多久,它就给了我一个详细的评估报告。我一看,它不仅评估了场景的知识概念,还预测了难度级别,并且给出了答案解释。

我指着报告说:“你看,这个问题涉及到伪装动物的识别,难度级别是中等的。”

然后,我又指向另一个问题:“这里呢,是一个高难度的伪装植物问题,涉及到植物学的知识概念。”

最后,我给它一个复杂场景:“给我生成一个关于伪装昆虫的定位问题,要求难度较高。” 它生成了一个关于昆虫在自然场景中定位的问题,需要模型进行深入分析和识别。

不得不说,有了MM-CamObj,让模型在处理伪装对象场景时变得简单明了,让我的工作轻松多了。秋高气爽,不用加班,可以出去走走了。

让我们一起走进数据集:MM-CamObj|视觉语言模型数据集|伪装对象识别数据集

免费数据集网站:遇见数据集

遇见数据集-让每个数据集都被发现,让每一次遇见都有价值遇见数据集,国内领先的百万级数据集搜索引擎,实时追踪全球数据集市场,助力把握数字经济时代机遇。icon-default.png?t=O83Ahttps://www.selectdataset.com/

遇见数据集是一个平台,致力于让每个数据集都被发现,让每一次遇见都有价值,

1、数据获取的便利性:

遇见数据集通过集中整合全球数据资源,提供了一个一站式平台,使得用户能够轻松搜索和访问各种数据集,无需在多个来源之间进行切换,从而提高了数据获取的效率。

2、数据的可发现性:

通过详细的数据标签和分类系统,遇见数据集增强了数据集的可发现性,帮助用户快速找到特定领域的数据集,尤其是对于特定研究领域或应用场景的数据,极大地方便了数据的检索和使用。

3、数据更新的及时性:

遇见数据集频繁更新数据集内容,确保用户能够获取最新的数据资源,这对于需要最新数据进行分析和研究的用户来说尤为重要,保证了数据的时效性和相关性。

遇见数据集-让每个数据集都被发现,让每一次遇见都有价值遇见数据集,国内领先的百万级数据集搜索引擎,实时追踪全球数据集市场,助力把握数字经济时代机遇。icon-default.png?t=O83Ahttps://www.selectdataset.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值