(零基础可以看懂)深度强化学习之DQN类算法之第1篇-2013年NeurIPS版本的DQN(含代码)-《强化学习系列专栏第4篇》
背景
DQN是由Deep Q-Learning缩写而来。从名字中可以看出,其本质上还是一种Q-Learning算法,只不过结合了深度学习。2013年的时候,位于伦敦的DeepMind(现在已经被谷歌收购了,也就是Alpha Go的父母)在NeurIPS发表了一篇名为《Playing Atari with Deep Reinforcement Learning》的论文,它出人不意的将神经网络引进到了Q-Learning算法中。该模型可以通过训练后,让其自主的玩那种我们小时候玩的小霸王的那种游戏(暴露了我的年龄,哈哈)。下面,我开始讲解这篇论文,并将我自己复现的代码放上来。
论文原文链接
《Playing Atari with Deep Reinforcement Learning》
介绍
读懂这篇论文还需要知道一些前置的知识,前置的知识我已经讲解过了,在我的博客上,我附一下链接。
第1篇:(零基础可以看懂)强化学习中的动态规划(贝尔曼方程)(含代码)-《强化学习系列专栏第1篇》
第2篇:(零基础可以看懂)强化学习中的蒙特卡罗应用(贝尔曼方程)(含代码)-《强化学习系列专栏第2篇》
第3篇:(零基础可以看懂)强化学习中的时间差分算法(含代码)-《强化学习系列专栏第3篇》
与Q-Learning的区别在于,DQN使用了神经网络当作其Q函数(Q table),由于神经网络的连续及非线性的特征,使得神经网络可以表示“无限多”的状态。
模型关键部分解释
我们这里以打乒乓这个游戏举例子,在gym里面名称为“Pong-v0”。游戏如下图,
①算法中使用了一个名为replay memory的变量D(代码中实际上是一个队列)去存储情形(当前的状态,当前的行为,当前行为的奖励,下一个状态),然后训练的时候,从变量D中随机选取batch_size个样本去训练神经网络部分。这样做的目的是为了防止训练数据的连续性导致模型的不够泛化(因为是随机抽取的,所以可以保证每次抽取出来的训练数据不是连续的)。这个replay memory是有最大存储限制的,论文中是设置了D的最大长度是100万。
②为了减少状态的数量,论文中对图片进行了预处理,由于图片是210160(高宽)尺寸的,并且有128种颜色,也就是说图片有3个通道。于是论文中,首先将图片转为灰度图,转换完之后,图片就只有1个通道了。接着,再对该灰度图进行下采样到11084的尺寸。最后,再将图片的中间区域裁剪出来,裁剪成8484尺寸大小的图片。只有经过这样预处理过后的图片,才可以放到神经网络里面进行前向传播。经过预处理后的图片如下图所示,
③由于如果只放一张图片到神经网络里面去,神经网络并不会捕捉到动态的信息,比如球到底是从左边往右边飞,还是从右边往左边飞(玩游戏是一个类似视频一样有前后动态关系的一种场景),因此,要想让神经网络知道这是一个动态的状态,我们将此时此刻这1帧图片,再加前3帧图片,组成4个通道,放到神经网络里,这样一来,神经网络就知道“前因后果”中的“前因”了,它就知道球从哪个方向飞过来了。
④神经网络部分其实是对图片进行一个特征提取,然后映射到可行的动作的数量的维度上。神经网络的结构是这样的:
第1层:首先,网络的输入是4幅
84
∗
84
84*84
84∗84大小的图片,4幅图片组成4个通道。所以,网络的输入数据的shape是[batch_size, 4, 84, 84],接着,使用16个
8
∗
8
8*8
8∗8大小,上下左右步长均为4的卷积核,进行卷积操作,然后使用ReLU进行激活。此时输出的shape为[batch_size, 16, 20, 20]。
第2层:使用32个
4
∗
4
4*4
4∗4,上下左右步长均为步长为2的卷积核,进行卷积操作,然后使用ReLU进行激活。此时输出的shape为[batch_size, 32, 9, 9]。接着将其压平,变成[batch_size, 2592]的shape。
第3层:使用
2592
∗
256
2592*256
2592∗256大小的全连接层进行全连接操作。然后使用ReLU激活函数激活,此时输出的shape为[batch_size, 256]。
第4层:使用
256
∗
动作数量
256*动作数量
256∗动作数量大小的全连接层进行全连接操作。此时输出的shape为[batch_size, 动作数量]。在打乒乓球的游戏中,动作数量为6。
我们讲完了关键的要点,我们直接将算法的伪代码放上来。
伪代码中需要注意的点如下:
①capacity N就是所设置的D的最大长度。
②
Φ
1
Φ_1
Φ1其实就是对图像所作的预处理的操作。
③该算法和Q-Learning一样,使用了ε-greedy的方法。
④store transition
(
Φ
t
,
a
t
,
r
t
,
Φ
t
+
1
)
(Φ_t, a_t, r_t, Φ_{t+1})
(Φt,at,rt,Φt+1) in D这句话要注意,存储是当前的状态(也就是当前帧的图片),当前的行为,当前行为所获得的奖励,下一个状态(也就是下一帧图片)。
⑤标签值
y
j
y_j
yj是会变化的,如果下一个状态游戏已经结束,那么
y
j
=
r
j
y_j=r_j
yj=rj,否则还要加上一项上述图中的公式。
⑥使用的是MSE作为损失函数。
代码
# encoding=utf-8
'''
Author: Haitaifantuan
Create Date: 2020-09-27 23:23:52
Author Email: 47970915@qq.com
Description: Should you have any question, do not hesitate to contact me via E-mail.
'''
import gym
import torch.nn as nn
import torch
from torchvision import transforms
import atari_py
import random
import time
from PIL import Image
import matplotlib.pyplot as plt
from collections import deque
import copy
import os
class Preprocessing(nn.Module):
def __init__(self):
super(Preprocessing, self).__init__()
self.preprocessing = transforms.Compose([
# 按照论文步骤
# 先转换为灰度图
transforms.Grayscale(1),
# 再下采样到110*84的大小
transforms.Resize((110, 84)),
# 转换为Tensor()输入到网络
transforms.ToTensor()
]
)
def forward(self, input):
# 由于传进来是torch.Tensor()
# 所以我们要将其转换为PIL.Image才能预处理
input = Image.fromarray(input)
# 最后输出的就是论文所说的84*84的灰度图像了
output = self.preprocessing(input) # 这个时候output是[1, 84, 84]
# 将多余的维度压缩掉,最后返回的是[84, 84]的形状
output = torch.squeeze(output)
# 然后再裁剪到84*84的大小的游戏区域
output = output[17:101, :] # 这个区域是游戏的区域
# plt.imshow(output, cmap='gray')
# plt.show()
return output
class Deep_Q_Network(nn.Module):
def __init__(self, action_nums):
super(Deep_Q_Network, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(4, 16, (8, 8), 4),
nn.ReLU(), # 论文中使用的不一定是这个激活函数,这里是为了简化使用ReLU
nn.Conv2d(16, 32, (4, 4), 2),
nn.ReLU() # 论文中使用的不一定是这个激活函数,这里是为了简化使用ReLU
)
self.classifier = nn.Sequential(
nn.Linear(2592, 256),
nn.Linear(256, action_nums)
)
def forward(self, input):
output = self.features(input)
output = output.view(-1, 2592)
output = self.classifier(output)
output = torch.squeeze(output)
return output
def initialization(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight.data)
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight.data)
class Agent(object):
def __init__(self):
# 模型保存的路径
self.model_path = './2013_NIPS_DQN_cpu_trained_model_save_reward_loss/'
if not os.path.exists(self.model_path):
os.mkdir(self.model_path)
self.save_model_path = self.model_path + '/model'
self.lr = 0.001
# 我们玩“乒乓球游戏”,这里搭建下环境
self.env = gym.make('Pong-v0')
self.env = self.env.unwrapped
# 这个是游戏的valid的动作
self.action_space = self.env.action_space.n
self.action_nums = self.env.action_space.n
# 构建图像预处理对象
self.preprocessing = Preprocessing()
# 构建deep q-network网络
self.deep_q_network = Deep_Q_Network(self.action_nums)
# 初始化网络
if os.path.exists(self.save_model_path):
state_dict = torch.load(self.save_model_path)
self.deep_q_network.load_state_dict(state_dict)
print("从已训练好的模型中加载模型成功")
else:
self.deep_q_network.initialization()
print("初始化模型所有参数成功")
# 构建损失函数
self.loss_func = nn.MSELoss()
# 构建优化器
self.opti = torch.optim.SGD(self.deep_q_network.parameters(), lr=self.lr, momentum=0.9)
# 每次训练的样本数量,论文中是32
self.batch_size = 32
# 创建一个缓存,超过大小后,最新的放进去,老的扔掉
self.replay_memory_size = 200000 # 30000的话,2080Ti显存11G不够 10万需要20个G内存左右
self.replay_memory = deque()
# 当memory_size达到多少后,开始训练
self.begin_to_train_memory_size = 50000
self.alpha = 0.9
self.gamma = 0.9
self.init_epsilon = 1 # 论文为1
self.final_epsilon = 0.1 # 论文为0.1
self.epsilon_decay_frames = 1000000 # 论文1000000
self.train_times = 0
# 论文中是每4帧,agent进行一次动作的选择。
self.select_action_every_k_time = 4
# 记录reward变化的变量
self.reward_change = []
# 记录loss变化的变量
self.loss_change = []
def four_img_list_to_Q_net_input(self, four_img_list):
stacked = torch.stack(list(four_img_list))
return stacked
def generate_initial_4_frames(self, current_state_single_frame):
'''
由于环境一开始,four_img_list的长度是小于4的
因此我们需要让其长度达到4后,再继续后面的记录操作
在前4步,我们都使用模型选择动作
:param current_state_single_frame:
:return: 返回一个队列,里面存放了第1、2、3、4帧游戏画面的对应的Tensor数值
'''
four_img_list = deque()
# 由于一开始并没有4张图片可以使用
# 因此,我们根据当前的状态,复制出另外3张图片
# 然后随着step的进行,我们一张图片一张图片的放进去
four_img_list.extend([current_state_single_frame, current_state_single_frame,
current_state_single_frame, current_state_single_frame])
for _ in range(3):
# 渲染环境
self.env.render()
# 这里将4帧图片变成4个通道放到网络里
current_state_4_frames_stacked_result = self.four_img_list_to_Q_net_input(four_img_list)
# 放到网络里需要再添加一个Batch_size部分的维度
current_state_4_frames_stacked_result = torch.unsqueeze(current_state_4_frames_stacked_result, dim=0)
action_value = self.deep_q_network(current_state_4_frames_stacked_result)
action = torch.argmax(action_value)
next_state, reward, done, info = self.env.step(action)
next_state_to_tensor = self.preprocessing(next_state)
four_img_list.append(next_state_to_tensor)
four_img_list.popleft()
return four_img_list
def train(self):
# 原始论文:如果达到了replay_memory的最大值,那就开始从replay_memory中随机选取样本进行训练
# if len(self.replay_memory) > (self.replay_memory_size - 1):
if len(self.replay_memory) > self.begin_to_train_memory_size:
batch_data = random.choices(self.replay_memory, k=32)
# 拿到训练数据后,将他们进行解包
current_state_4_frames_stacked_result_list = [each[0] for each in batch_data]
current_state_action_list = torch.LongTensor([[each[1]] for each in batch_data])
reward_list = torch.FloatTensor([[each[2]] for each in batch_data])
next_state_4_frames_stacked_result_list = [each[3] for each in batch_data]
done_list = [[each[4]] for each in batch_data]
# 将训练数据放到模型里进行前向传播
y_pre = self.deep_q_network(torch.stack(current_state_4_frames_stacked_result_list).squeeze()).gather(dim=1,
index=current_state_action_list)
# 根据公式,构建标签值
q_net_result = self.deep_q_network(torch.stack(next_state_4_frames_stacked_result_list, dim=0)).detach()
y_target = reward_list + self.gamma * torch.max(q_net_result, dim=1)[0].reshape(self.batch_size, -1)
self.loss = self.loss_func(y_pre, y_target)
self.opti.zero_grad()
self.loss.backward()
self.opti.step()
self.train_times += 1
def close_env(self):
self.env.close()
def save_model(self):
torch.save(self.deep_q_network.state_dict(), self.save_model_path)
def fire_in_the_hole(self):
frame_count = 0
self.current_epsilon = self.init_epsilon
self.begin_time = time.time()
for self.episode in range(100000):
# 一个episode结束后,重新设置下环境,返回到随机的一个初始状态
current_state_single_frame = self.env.reset()
# 将current_state()预处理一下然后转换为Tensor
current_state = self.preprocessing(current_state_single_frame)
# 这个方法返回的four_img_list里面就存放了第1、2、3、4帧画面的Tensor()形式
four_img_list = self.generate_initial_4_frames(current_state)
current_state_4_frames_stacked_result = self.four_img_list_to_Q_net_input(four_img_list)
# 记录一下当前这一盘总的reward
self.current_episode_reward = 0
self.select_action_count = 0
while True:
# 渲染环境
self.env.render()
# 论文每4帧才根据ε-greedy方法做一个动作
# 其他3帧时间的动作选取上一轮选择的动作
if self.select_action_count == 0 or self.select_action_count == self.select_action_every_k_time:
# 根据ε-greedy方法,走一步,看看
if random.random() < self.current_epsilon:
current_state_action = self.env.action_space.sample()
else:
# 根据Q函数找到最优的动作
# 放到网络里需要再添加一个Batch_size部分的维度
action_value = self.deep_q_network(
torch.unsqueeze(current_state_4_frames_stacked_result, dim=0))
current_state_action = torch.argmax(action_value)
self.select_action_count = 0
next_state, reward, done, info = self.env.step(current_state_action)
next_state_to_tensor = self.preprocessing(next_state)
self.current_episode_reward += reward
four_img_list.append(next_state_to_tensor)
four_img_list.popleft()
next_state_4_frames_stacked_result = self.four_img_list_to_Q_net_input(four_img_list)
# (将当前的状态以及前三幅图片组成的图片,当前的行为,当前获得的奖励,下一个状态,游戏是否结束)添加到replay_memory中
self.replay_memory.append((current_state_4_frames_stacked_result, current_state_action,
reward, next_state_4_frames_stacked_result, done))
if len(self.replay_memory) > self.replay_memory_size:
self.replay_memory.popleft()
# 判断当前这一盘游戏是否结束
if done:
self.end_time = time.time()
self.minute = int((self.end_time - self.begin_time) / 60)
self.hour = int(self.minute / 60)
self.day = int(self.hour / 24)
if len(self.replay_memory) < self.begin_to_train_memory_size:
self.loss = torch.tensor(0)
break
current_state_4_frames_stacked_result = next_state_4_frames_stacked_result
self.select_action_count += 1
frame_count += 1
if frame_count <= self.epsilon_decay_frames:
self.current_epsilon = self.init_epsilon - (
self.init_epsilon - self.final_epsilon) * frame_count / self.epsilon_decay_frames
# 执行训练网络的操作,里面会判断reply_memory的长度是否达到最大值了
self.train()
self.reward_change.append(self.current_episode_reward)
self.loss_change.append(self.loss.data.item())
print(
"当前已训练{}天-{}小时-{}分钟===当前为第{}个Episode===当前episode共获得{}reward===总共已训练{}次===当前的loss为\
:{}===当前的epsilon值为:{}===当前reply_memory的长度为:{}".format(
self.day, self.hour, self.minute, self.episode, self.current_episode_reward, self.train_times,
self.loss,
self.current_epsilon, len(self.replay_memory)))
if self.episode % 10 == 0:
# 保存模型
self.save_model()
# 将当前的self.reward_change列表保存下来,以覆盖的方式保存下来。
with open(self.model_path + '/reward_change.txt', 'w', encoding='utf-8') as file:
file.write(str(self.reward_change))
# 将当前的self.loss_change保存下来
with open(self.model_path + '/loss_change.txt', 'w', encoding='utf-8') as file:
file.write(str(self.loss_change))
# 关闭游戏环境
self.close_env()
agent = Agent()
agent.fire_in_the_hole()
代码复现、详细讲解及我的Github地址
完整代码地址:https://github.com/haitaifantuan/reinforcement_leanring