UVA11396 Claw Decomposition

二分图判定

题目大意:

给出一个简单无向图,每个点的度为3。判断能否将此图分解成若干爪的形式,使得每条边都只出现在唯一的爪中。(点可以多次出现在爪中)

解题思路:

可以将爪的中心点视为关键点,对于每个关键点只属于唯一的爪中,对于关键点周围的3个点均不可能成为其它爪的关键点(否则与题目不符),所以原图可以分解为关键点与非关键点,关键点与关键点之间没有边相连,同理非关键点之间也没有边,那么此题就可以转化为二分图的判定问题,使用二染色的模版即可。

#include<bits/stdc++.h>
using namespace std;

struct edge {
    int u, v;
};

const int MAXN = 300;

struct T_T  {
    int n;
    vector<edge> Edge;
    vector<int> G[MAXN + 10];

    void init(int n) {
        Edge.clear();
        for(int i = 1; i <= n; i++) G[i].clear();
    }

    void Addedge(int u, int v)  {
        Edge.push_back((edge){u, v});
        G[u].push_back(Edge.size() - 1);
    }

    int color[MAXN + 10];
    bool bipartite(int u)    {
        for(int i = 0; i < G[u].size(); i++)    {
            edge &e = Edge[G[u][i]];
            if(color[e.u] == color[e.v])    return 0;
            if(!color[e.v]) {
                color[e.v] = 3 - color[e.u];
                if(!bipartite(e.v)) return 0;
            }
        }
        return 1;
    }

    void work() {
        memset(color, 0, sizeof(color));
        color[1] = 1;
        if(bipartite(1))    puts("YES");
        else puts("NO");
    }

    bool Read() {
        int u, v;
        if(scanf("%d", &n) != 1 || !n)  return 0;
        init(n);
        while(scanf("%d%d", &u, &v) == 2 && (u || v))   {
            Addedge(u, v);
            Addedge(v, u);
        }
        return 1;
    }

}   sp;

int main()  {
    while(sp.Read())
        sp.work();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值