久违的1A,就是写了个判断线段相交的模板,注意一个线段的端点在另外一个线段上或者端点上,属于被覆盖情况。
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<map>
#include<set>
#include<algorithm>
#include<vector>
#include<sstream>
#include<cmath>
using namespace std;
/**********************************************************/
struct point{
double x,y;
point (double i,double j){x=i;y=j;}//普通构造函数
point (const point& p){x=p.x;y=p.y;}//拷贝构造函数
point& operator = (const point& p){//重载=
x=p.x;y=p.y;
return *this;
}
point operator - (const point& p){//重载-,b-a => b.-(a) 即线段ab
return point (p.x-x,p.y-y);
}
point (){}
};
struct segment{
point left,right;
segment (point a,point b){left=a;right=b;}
segment (){}
};
const int MAX_NUM = 100000+10;
const double MAX_DOUBLE = 100000000.0;
segment allSegment[MAX_NUM];
double CrossMuti (point a,point b){return a.x*b.y-a.y*b.x;}
double min_2 (double x,double y) {return x<y?x:y;}
double max_2 (double x,double y) {return x>y?x:y;}
/* 0-不相交 1-正常相交 2-端点在线段上 3-重合 */
int ab_cross_cd (point a,point b,point c,point d)
{
if(min_2(a.x,b.x)>max_2(c.x,d.x)||min_2(a.y,b.y)>max_2(c.y,d.y)||
max_2(a.x,b.x)<min_2(c.x,d.x)||max_2(a.y,b.y)<min_2(c.y,d.y) ) return 0;
point abVec=b-a,acVec=c-a,adVec=d-a;
double x = CrossMuti (abVec,acVec);
double y = CrossMuti (abVec,adVec);
if(x==0.0&&y==0.0)//重合
return 3;
else if (x==y)
return 0;//不相交
else{
point cdVec=d-c,caVec=a-c,cbVec=b-c;
x*=y;
y=CrossMuti (cdVec,caVec)*CrossMuti (cdVec,cbVec);
if (x<0 && y<0) return 1;
else if ((x==0&&y<=0)||(y==0&&x<=0)) return 2;
else return 0;
}
}
/**********************************************************/
int main()
{
//freopen ("in.txt","r",stdin);
int n;
while (scanf ("%d",&n)&&n)
{
for (int i=0;i<n;i++)
scanf ("%lf %lf %lf %lf",&allSegment[i].left.x,&allSegment[i].left.y,&allSegment[i].right.x,&allSegment[i].right.y);
printf ("Top sticks:");
for (int i=0;i<n;i++){
int vis=1;
for (int j=i+1;j<n;j++)
if (ab_cross_cd (allSegment[i].left,allSegment[i].right,allSegment[j].left,allSegment[j].right)>0){vis=0;break;}
if (vis){
printf (" %d",i+1);
if (i==n-1) printf (".\n");
else printf (",");
}
}
}
return 0;
}