mne-python是一款开源的用于EEG/EMG分析、处理和显示的软件。遵循BSD-license协议,由Harvard大学牵头,社区共同开发。主要功能包括:EEG/MEG信号的预处理和去噪,源估计,时频分析,统计测试,功能性连接,机器学习,传感器和源的可视化等等。
mne支持了大部分常见的原始数据格式,默认的(以及自带的sample data)采用的是一种.fif格式,但同时它也支持如.vhdr,.edf,.bdf,.cnt,.egi,.set等格式。
Homepage介绍里给了一段20行的py代码进行原始数据的读取和源估计。
>>> import mne
>>> raw = mne.io.read_raw_fif('raw.fif') # load data
>>> raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels
>>> raw.filter(l_freq=None, h_freq=40.0) # low-pass filter
>>> events = mne.find_events(raw, 'STI014') # extract events and epoch data
>>> epochs = mne.Epochs(raw, events, event_id=1, tmin=