OpenBCI使用教程(三)——采集BDF格式的脑电文件

一、打开并配置OpenBCI-GUI

在如下的界面中,session data一栏中选择bdf+,其余选项根据自己情况配置即可。

这里要注意一下,有些电脑要是采集不了数据,一定要在管理员模式下运行程序

二、开始采集

这里不需要多说了,点击start session开始。如果后续需要打开采集后得到的文件的话需要先停止session

三、获取采集文件

进入目录C:\Users\wby\Documents\OpenBCI_GUI\Recordings   (这里的“wby”要替换成你自己的用户名)然后就能看到采集到的bdf文件了

这里每个文件就是对应每次session采集的脑电信号。

四、使用BDF文件

我们一般在做科研的时候都会在Python研究采集到的脑电信号,读取bdf文件用大名鼎鼎的mne库就可以了

mne.io.read_raw_bdf(input_fname, eog=None, misc=None, stim_channel='auto', exclude=(), infer_types=False, include=None, preload=False, units=None, encoding='utf8', exclude_after_unique=False, *, verbose=None)

(这是官方的使用示例)

我顺便也把官网上的参数说明附上

mne.io.read_raw_bdf — MNE 1.9.0 documentation

处理 `.bdf` 文件中的信号并应用HHT(Hilbert-Huang Transform)算法在 MATLAB 中需要分为几个步骤: ### 第一步:加载 `.bdf` 文件 首先需要读取 `.bdf` 格式的信号数据。这可以通过使用相应的工具箱或函数来完成。例如,使用 `bioformats` 工具箱或者编写自定义的读取函数。 ### 第二步:实现经验模态分解 (EMD) 接下来是进行经验模态分解,将原始信号分解成若干个本征模态函数(IMF)和一个残差项。EMD 的主要步骤包括“筛分过程”,通过不断地提取局部极值点,并拟合上下包络线后求平均,然后从原始信号中减去该平均值得到第一个IMF;重复此过程直到得到所有IMF。 ### 第步:计算希尔伯特谱 对于每个 IMFs 应用 Hilbert 变换以获得瞬时频率与幅度的信息。这些信息可用于构建希尔伯特谱图(Hilbert Spectrum),它展示了随时间变化的能量分布情况。 由于提供的文档没有直接给出具体的代码实现细节,以下是一个简化版的概念性伪代码示例,用于说明如何结合上述个步骤处理数据: ```matlab % 假设已经安装了必要的工具箱来读取 .bdf 文件 signal = read_bdf_file('yourfile.bdf'); % 此处应替换为实际读取函数 % 实现EMD分解 imfs = emd(signal); % 对每一个IMF执行Hilbert变换获取瞬时频谱 for i = 1:length(imfs) hilbertSpec{i} = abs(hilbert(imfs(i))); end % 绘制希尔伯特谱图或其他后续分析 figure; for i = 1:length(hilbertSpec) plot(hilbertSpec{i}); hold on; end legend({'IMF 1', 'IMF 2', ...}); % 根据实际IMF数量调整 title('Hilbert Spectra'); xlabel('Time'); ylabel('Amplitude'); % 进行进一步的数据分析... ``` 注意这个例子是非常简化的版本,并且假定了 `read_bdf_file()` 和 `emd()` 函数的存在,实际上可能需要使用更复杂的库如 EEGLAB 或 FieldTrip 来支持 `.bdf` 文件格式以及EMD的计算。此外,在真实应用场景下还需要考虑更多因素比如噪声过滤等预处理步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值