paper
文章平均质量分 90
ACGlyt
这个作者很懒,什么都没留下…
展开
-
【论文阅读】semantic image segmentation with deep convolutional nets and fully connected CRFs
文章的主要贡献:速度:带atrous算法的DCNN可以保持8FPS的速度,全连接CRF平均推断需要0.5s;准确:在PASCAL语义分割挑战中获得了第二的成绩;简单:DeepLab是由两个非常成熟的模块(DCNN和CRFs)级联而成。一、概述自LeCun(1998)以来,DCNN一直被选作版面识别的方法,如今已经成为高级视觉研究的主流,提高了计算机视觉性能,广泛应用于图像分割,对象检测,细粒度分类...原创 2018-05-17 14:24:03 · 3153 阅读 · 0 评论 -
【论文总结】weakly- and semi-supervised learning of a DCNN for semantic Image Segmentation
一、概述这篇文章研究了如何从弱注释的训练数据(如边界框或图像级标签)或少量强标记图像和许多弱标记图像的组合中学习DCNN用于语义图像分割的问题,在弱超监督和半监督条件下提出了期望最大化(EM)方法。代码:https://bitbucket.org/deeplab/deeplab-public二、研究内容文章将焦点放在用弱标签训练调参上,所以训练阶段没使用CRF,只在测试阶段使用。编码:m表示像素,...原创 2018-05-13 16:34:01 · 5619 阅读 · 0 评论 -
【论文阅读】SVM for classification in remote sensing
遥感怎么分类的题目:Support vector machines for classification in remote sensing作者:M. PAL,P. M. MATHER 英国诺丁汉大学地理学院一、综述文章旨在比较SVM、最大似然法(ML)及人工神经网络(ANN)在分类任务中的准确率。使用的数据为Landsat-7 ETM+(多光谱数据)和DAIS(高光谱数据),实验...原创 2019-08-07 17:40:55 · 363 阅读 · 0 评论 -
【论文阅读】Semantic Segmentation with deep convolutional nets and fully connected CRFs
一、摘要深度卷积神经网络(DCNN)最近在高级视觉任务中展示了最先进的性能,例如图像分类和对象检测。这项工作汇集了来自DCNN和概率图形模型的方法,用于解决像素级分类(也称为“语义图像分割”)的任务。我们表明DCNN最后一层的响应没有充分定位,无法进行精确的对象分割。这是由于非常不变的属性使DCNN有利于高级任务。我们通过将最终DCNN层的响应与完全连接的条件随机场(CRF...原创 2019-08-07 17:38:02 · 401 阅读 · 0 评论 -
【论文阅读】Material Recognition in the Wild with the Materials in Context Database
康奈尔大学计算机系貌似这里的patches补丁就是图片的意思。一、摘要识别真实图像中的材料是一项具有挑战性的任务。真实世界的材料具有丰富的表面纹理,几何形状,照明条件和杂乱,这使得问题特别困难。在本文中,我们介绍了一个新的,大规模,开放的野外材料数据集,上下文材料数据库(MINC),并将该数据集与深度学习相结合,以实现野外图像的材料识别和分割。MINC比以前的材料数据库大一个数量级,...原创 2019-08-07 17:39:53 · 348 阅读 · 0 评论