斯坦福机器学习
断腿小胖子
多多交流学习
展开
-
斯坦福大学机器学习第四课“逻辑回归(Logistic Regression)”
斯坦福大学机器学习第四课“逻辑回归(Logistic Regression)”本次课程主要包括7部分:1) Classification(分类)2) Hypothesis Representation3) Decision boundary(决策边界)4) Cost function(代价函数,成本函数)5) Simplified cost func转载 2015-04-10 09:46:28 · 1051 阅读 · 0 评论 -
斯坦福大学机器学习第六课“神经网络的表示(Neural Networks: Representation)”
斯坦福大学机器学习第六课“神经网络的表示(Neural Networks: Representation)”本次课程主要包括7部分:1) Non-linear hypotheses (非线性hypotheses)2) Neurons and the brain (神经元和大脑)3) Model representation I (模型表示一)4) Model repre转载 2015-04-15 16:23:45 · 1200 阅读 · 0 评论 -
斯坦福大学机器学习第五课"正则化“
斯坦福大学机器学习第五课"正则化“本次课程主要包括4部分:1) The Problem of Overfitting(过拟合问题)2) Cost Function(成本函数)3) Regularized Linear Regression(线性回归的正则化)4) Regularized Logistic Regression(逻辑回归的正则化)以下是每一部分的详细解转载 2015-04-15 15:04:17 · 695 阅读 · 0 评论 -
斯坦福大学机器学习第一课“引言(Introduction)”
斯坦福大学机器学习第一课“引言(Introduction)”一、机器学习概览1)机器学习定义:机器学习是人工智能的一个分支,目标是赋予机器一种新的能力。机器学习的应用很广泛,例如大规模的数据挖掘(网页点击数据,医疗记录等),无人驾驶飞机、汽车,手写手别,大多数的自然语言处理任务,计算机视觉,推荐系统等。 机器学习有很多定义,广为人知的有如下两条:转载 2015-04-09 15:39:11 · 980 阅读 · 0 评论 -
斯坦福大学机器学习第三课“多变量线性回归“
斯坦福大学机器学习第三课“多变量线性回归(Linear Regression with Multiple Variables)”斯坦福大学机器学习第四课”多变量线性回归“学习笔记,本次课程主要包括7部分:1) Multiple features(多维特征)2) Gradient descent for multiple variables(梯度下降在多变量线性回归中转载 2015-04-09 19:36:10 · 1239 阅读 · 0 评论 -
斯坦福大学机器学习第二课 “单变量线性回归”
斯坦福大学机器学习第二课“单变量线性回归(Linear regression with one variable)”发表于 2012年05月6号 由 52nlp斯坦福大学机器学习第二课”单变量线性回归“学习笔记,本次课程主要包括7部分:1) Model representation(模型表示)2) Cost function(代价函数,成本函数)3) C转载 2015-04-09 15:55:15 · 1248 阅读 · 0 评论