【kaldi】chain-model训练时,加载预训练模型

博客介绍了如何在chain-model训练过程中遇到GPU问题导致中断时,通过修改代码实现断点续训,避免重复训练。主要涉及在train.py中利用--trainer.input-model参数加载预训练模型,并在run_tdnn.sh脚本中添加相应代码以传递该参数,允许从上次中断的模型继续训练。这样可以显著节省长时间训练的时间成本。
摘要由CSDN通过智能技术生成

最近在用chain-model训练时偶尔会出现找不到GPU卡而训练终止。而很烦的是原本的代码,中途训练终止时,重新训练的话,又得重头开始跑,对于跑一遍流程需要好多天的我来说,真的伤不起。

所以通过查看源码,了解了chain-model加载预训练模型的方案,这样即使出现异常,也能从失败的地方继续训练。这个方法只需要在源码中简单的改几个地方即可。详细如下面介绍。

我在查看./steps/nnet3/chain/train.py的代码时,发现其中中含有--trainer.input-model的参数,如果指定的话,就会在初始化的时候,加载指定的参数作为预训练模型。

不过local/chain/run_tdnn.sh脚本中,没有使用到--trainer.input-model参数,所以要调整一下脚本,把这个参数透传出来。添加的代码如下图红框所示:

 (1)在执行训练的指令里面,加入下图显示的代码:

(2)然后,代码的开头加入input_model参数,默认值为0.mdl。使得这个参数仍然可以透传出去。

(3)这样在执行local/chain/run_tdnn.sh的脚本里面或者单独执行的时候,就能指定输入模型来,下面是展示单独执行时的示例指令,供参考:

bash local/chain/run_tdnn.sh --nj 30 \

 --num_epochs 10 \

 --num_jobs_initial 4 \

 --num_jobs_final 4 \

 --minibatch_size 128 \

 --stage 11 \

 --input_model "exp/chain/tdnn_8a_i1_sp/800.mdl"

这里,--input_model后跟的参数即为我们指定的要预加载的模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值