leetcode.107.Binary Tree Level Order Traversal II

Description

Given a binary tree, return the bottom-up level order traversal of its nodes’ values. (ie, from left to right, level by level from leaf to root).

For example:
Given binary tree [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

return its bottom-up level order traversal as:

[
  [15,7],
  [9,20],
  [3]
]

sln1

看到题目很直接就想到用广度优先搜索,用递归实现。python代码如下

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def levelOrderBottom(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if root == None:
            return []
        return self.bfs([root])
    def bfs(self, nodes):
        if len(nodes) == 0:
            return []
        branch = []
        values = []
        for node in nodes:
            values.append(node.val)
            if node.left != None:
                branch.append(node.left)
            if node.right != None:
                branch.append(node.right)
        next_layer_values = self.bfs(branch)
        next_layer_values.append(values)
        return next_layer_values

每一次递归一个循环,分别记录values和branch数组。values数组记录当前层每个节点的val,branch数组记录当前层的所有子节点。接下来调用bfs方法获取到当前层以下的所有层的遍历结果,再把values数组添加进去并返回。思路十分清晰,但是提交后看结果并不是十分理想,同样是python实现,只超过了10%+的提交。

sln2

参考discussion中一个标题为 C++ 4ms solution 的答案,用python简答复现了一次,提交结果尽然比70%+的结果快。python实现如下:

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def levelOrderBottom(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if root == None:
            return []
        depth = self.depth(root)
        return self.levelOrder([[] for _ in xrange(depth)], root, depth - 1)
    def levelOrder(self, ans, node, depth):
        if node is None:
            return ans
        ans[depth].append(node.val)
        ans = self.levelOrder(ans, node.left, depth - 1)
        ans = self.levelOrder(ans, node.right, depth - 1)
        return ans
    def depth(self, node):
        if node is None:
            return 0
        return max(self.depth(node.left), self.depth(node.right)) + 1

一开始并不是很理解为什么这个实现会比我的第一种实现更快,思考一下之后发现,第一种实现方法里面很显然是有一个循环的。在这个循环中,我们遍历了一遍父节点,并把子节点都压进一个数组中,相当于也遍历了一遍子节点。当我们把这个子节点数组丢进下一次递归时,又会再遍历一次,所以实际上等于所有子节点都遍历了两次,所以速度上就慢了很多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值