一.常规方法:
分析历史数据或窗口数据的均值、中位数、众数分布,选择算法。


算法流程:

- 绝对中位差
绝对中位差,即Median Absolute Deviation(MAD),是对单变量数值型数据的样本偏差的一种鲁棒性测量。在先验为正态分布的情况下,一般C选择1.4826,k选择3。

应用:根据历史数据(例如近一个月)的绝对中位差,计算上下限值。使用上下限值作为当前的上下阈值。
- 箱形图
箱形图主要通过几个统计量来描述样本分布的离散程度以及对称性,包括:
- Q0:最小值(Minimum)
- Q1:下四分位数(Lower Quartile)
- Q2:中位数(Median)
- Q3:上四分位数(Upper Quartile)
- Q4:最大值(Maximum)

将Q1与Q3之间的间距称为IQR,当样本偏离上四分位1.5倍的IQR(或是偏离下四分位数1.5倍的IQR)的情况下,将样本视为是一个离群点。
应用:根据历史数据(例如近一个月)计算IQR,1.5倍的IQR上下限值。使用上下限值作为当前的上下阈值。
- 极

本文介绍了异常检测的常规方法,如绝对中位差、箱形图和极值理论,并探讨了周期时序预测中的自回归系列和Prophet模型。自回归模型包括ARIMA的建模步骤,而Prophet模型适用于处理周期效应和节假日影响,但两者都有其局限性,如适用范围、长期预测效果和变点问题。
最低0.47元/天 解锁文章
2510

被折叠的 条评论
为什么被折叠?



