异常检测&动态阈值

本文介绍了异常检测的常规方法,如绝对中位差、箱形图和极值理论,并探讨了周期时序预测中的自回归系列和Prophet模型。自回归模型包括ARIMA的建模步骤,而Prophet模型适用于处理周期效应和节假日影响,但两者都有其局限性,如适用范围、长期预测效果和变点问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.常规方法:

分析历史数据或窗口数据的均值、中位数、众数分布,选择算法。

 

算法流程:

  • 绝对中位差

绝对中位差,即Median Absolute Deviation(MAD),是对单变量数值型数据的样本偏差的一种鲁棒性测量。在先验为正态分布的情况下,一般C选择1.4826,k选择3。

应用:根据历史数据(例如近一个月)的绝对中位差,计算上下限值。使用上下限值作为当前的上下阈值。

  • 箱形图

箱形图主要通过几个统计量来描述样本分布的离散程度以及对称性,包括:

  • Q0:最小值(Minimum)
  • Q1:下四分位数(Lower Quartile)
  • Q2:中位数(Median)
  • Q3:上四分位数(Upper Quartile)
  • Q4:最大值(Maximum)

将Q1与Q3之间的间距称为IQR,当样本偏离上四分位1.5倍的IQR(或是偏离下四分位数1.5倍的IQR)的情况下,将样本视为是一个离群点。


应用:根据历史数据(例如近一个月)计算IQR,1.5倍的IQR上下限值。使用上下限值作为当前的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值