【问题】——Tesla P4 docker 部署pytorch模型时,推理速度慢

本文分析了在Docker环境下使用GPU进行PyTorch推理时,不同输入尺寸对性能的影响。结果显示,输入尺寸从224*224到1920*1080,平均耗时分别为0.223、0.436、0.633和0.827秒。torch.cuda.is_available()检查确认了CUDA支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述用docker部署GPU pytorch 推理,mobilenetv2模型,224*244的输入,时间需要:

size:224*224 | 平均耗时为:0.223
size:640*480 | 平均耗时为:0.436
size:1080*720 | 平均耗时为:0.633
size:1920*1080 | 平均耗时为:0.827

torch.cuda.is_available() 检查=True

解决方案

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值